Difference between revisions of "Poisson Statistics"

From JuniorLab
Jump to: navigation, search
 
(11 intermediate revisions by 2 users not shown)
Line 1: Line 1:
 +
 +
== Poisson Statistics ==
 +
 +
[https://ghz.unm.edu/education/juniorlab_pdfs/experimentprocedures/poissonstatistics.pdf Experiment Instructions (pdf)]
  
 
== Background ==
 
== Background ==
  
[http://www.unm.edu/~mph/307/Poisson_UNM2.pdf Experiment Instructions (pdf)]
+
The Poisson distribution can characterize random events that occur at a well-defined average rate. It is widely used in atomic and sub-atomic physics. The Poisson distribution is effective in a variety of statistical applications. The most common involve event probabilities, but several assumptions must hold true: i) the rate at which random events
 +
occur does not change for the duration of the measurement; ii) the occurrence of one event does not change the likelihood of another event; iii) events occur at a slow enough rate that they can be individually distinguished.
 +
 
 +
In this experiment, Poisson statistics will be used to analyze random radioactive decay events that occur in a defined time interval. A decay occurs an integer k number of times in the interval, including possibly not at all (k = 0). The average number of events expected in a defined time interval is λ, known as the event rate. Given λ,
 +
the probability of observing k events in the time interval is:
 +
 
 +
 
 +
 
  
  
 
== Background Reading ==
 
== Background Reading ==
  
[https://www.umass.edu/wsp/archive/reference/poisson/index.html The Poisson Distribution]
+
[https://en.wikipedia.org/wiki/Poisson_distribution The Poisson Distribution]
 +
 
 +
[https://ghz.unm.edu/education/juniorlab_pdfs/ucs30_manual.pdf UCS30 Setup]
  
  
Line 13: Line 26:
 
== History ==
 
== History ==
  
Experiment set up and verified by Martin Hoeferkamp, January 2020
+
Jan 2020 - Experiment set up and verified by Martin Hoeferkamp
 +
 
 +
Feb 2020 - Software migrated to Windows 10
 +
 
 +
Feb 2020 - Weak signal observed by group performing lab
 +
 
 +
Feb 2020 - Major failure of high-voltage source on UCS30 spectrometer, serial number 505, should be sent for repair: [[Equipment]]
 +
 
 +
Feb 25, 2020 - Experiment performed with alternate UCS30 with no issues
 +
 
 +
March 2021 - Experiment migrated to new computer with UNM Colleges login, no issues found
 +
 
 +
 
 +
== Notes ==
 +
 
 +
This experiment can be done by one student in one session.
 +
Taking sets of background data without a source is the most time consuming part, taking around an hour.

Latest revision as of 14:43, 23 March 2021

Poisson Statistics

Experiment Instructions (pdf)

Background

The Poisson distribution can characterize random events that occur at a well-defined average rate. It is widely used in atomic and sub-atomic physics. The Poisson distribution is effective in a variety of statistical applications. The most common involve event probabilities, but several assumptions must hold true: i) the rate at which random events occur does not change for the duration of the measurement; ii) the occurrence of one event does not change the likelihood of another event; iii) events occur at a slow enough rate that they can be individually distinguished.

In this experiment, Poisson statistics will be used to analyze random radioactive decay events that occur in a defined time interval. A decay occurs an integer k number of times in the interval, including possibly not at all (k = 0). The average number of events expected in a defined time interval is λ, known as the event rate. Given λ, the probability of observing k events in the time interval is:



Background Reading

The Poisson Distribution

UCS30 Setup


History

Jan 2020 - Experiment set up and verified by Martin Hoeferkamp

Feb 2020 - Software migrated to Windows 10

Feb 2020 - Weak signal observed by group performing lab

Feb 2020 - Major failure of high-voltage source on UCS30 spectrometer, serial number 505, should be sent for repair: Equipment

Feb 25, 2020 - Experiment performed with alternate UCS30 with no issues

March 2021 - Experiment migrated to new computer with UNM Colleges login, no issues found


Notes

This experiment can be done by one student in one session. Taking sets of background data without a source is the most time consuming part, taking around an hour.