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Background. The Poisson distribution can characterize random
events that occur at a well-defined average rate. It is widely used
in atomic and sub-atomic physics.

The Poisson distribution is effective in a variety of statistical appli-
cations. The most common involve event probabilities, but several
assumptions must hold true: i) the rate at which random events
occur does not change for the duration of the measurement; ii) the
occurrence of one event does not change the likelihood of another
event; iii) events occur at a slow enough rate that they can be
individually distinguished.

In this experiment, Poisson statistics will be used to analyze random
radioactive decay events that occur in a defined time interval. A
decay occurs an integer k number of times in the interval, including
possibly not at all (k = 0). The average number of events expected
in a defined time interval is λ, known as the event rate. Given λ,
the probability of observing k events in the time interval is:

Pk = e−λ
λk

k!
(1)

If the interval gets longer, λ increases commensurately and Pk changes.

Experiment. The radioactive source is Cs-137, with half-life of 30.2 years. The probability
that a single atom will decay in a 100 ms interval, for example, is 6.87 × 10−11, i.e. an
extremely unlikely occurrence. If the source has enough mass, however, a sufficient number
of decays will happen in a reasonable measurement time.

Because their energy is so high, it is difficult to detect gamma-rays directly. Indirect detection
is used here through a process called scintillation. A scintillator is a special material – in this
case a sodium iodide (NaI) crystal – that converts high-energy photons such as gamma-rays
into visible photons that can be detected. The NaI scintillation crystal is directly attached to
a photo-multiplier tube (PMT) that is sensitive enough to resolve very few visible photons.
Detected photons appear as voltage pulses at the output of the PMT. The height of the
voltage pulse is directly proportional to the energy of the gamma-ray that created it, which
is 662 keV for Cs-137.

A multi-channel analyzer (MCA) can measure the energy of the gamma-rays and also the
rate at which they strike the scintillator. The rate of spontaneous gamma-ray emission is of
interest in this experiment. The MCA is configured to count gamma-rays in a defined time
interval. It does this counting repetitively, building up a statistical ensemble of N intervals
each holding an event count. When viewed as a histogram, a distinct distribution becomes
evident.
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The key to observing a Poisson distribution is keeping the event rate λ sufficiently low. The
distribution plot will appear asymmetric. As λ increases, the distribution transitions to a
symmetric Gaussian.

Equipment and Setup. The PMT/scintillator and radioactive source must be shielded
inside a lead brick enclosure. Use caution when moving the bricks as they are very heavy.
Radioactive sources are stored in a locked box. Ask the instructor for access.

The MCA is a model UCS30 with accompanying GUI software and user manual. Referring
to the user manual will make setup and data taking easier. The most critical aspect of setup
is the PMT high-voltage setting. The polarity and maximum voltage will be marked on the
PMT (typically +1200V). Please have your setup confirmed by an instructor before enabling
high-voltage.

Initial data is acquired without a radioactive source. Place the PMT/scintillator inside the
lead brick enclosure and proceed to the MCA setup.

The MCA communicates with a host PC via USB. It biases the PMT using a special BNC
cable with high voltage connectors. Never force a BNC cable onto a non-mating connector. A
second BNC cable feeds the output of the PMT to the MCA, where pulses are appropriately
amplified, conditioned, and counted.

Quick-start for the UCS-30 is as follows. From the menu bar, select Spectrum: Connect to
Device, then Mode: Pulse Height Analysis (Preamp-in). In the main menu, set the High
Voltage to 1000V and click the OFF button to turn the HV ON. Under Settings select
Amp/HV/ADC. Set Conversion Gain at 256; Coarse Gain: 1; Fine Gain: 1. Make sure the
discriminator range is at maximum: 3–256.

Switch to Mode: MCS Internal. The duration of the acquisition interval is set with Set-
tings: MCS Settings: Dwell Time. The combination of the adjustable PMT voltage (i.e. gain)
and dwell time will determine the event rate. The MCA acquires counts in a succession of
N = 256 measurement intervals.

Press the run button. Counts will be displayed for each interval. This should be a relatively
flat line, but with statistical fluctuations. You will need to make 3 data runs to attain 3
different average event rates in each interval: i) 1–2 counts, ii) 5 counts, and iii) 10 counts.
At the lowest event rate, there will be many empty intervals. At the highest, there will likely
be none. To get the needed count rates, perform trial-and-error experimentation with the
PMT voltage and dwell time. When an acceptable data run has been completed, save it to
disk as a tab or comma delineated file. In your writeup, discuss why counts would be present
in the absence of a radioactive source.

Place a 1 µCi Cs-137 source next to the scintillator. Set Mode: Pulse Height Analysis
(Preamp-in). In the main menu, set the High Voltage. This is not critical; 1000V is a good
initial setting. Under Settings select Amp/HV/ADC. Set Conversion Gain at 256; Coarse
Gain: 4; Fine Gain: 1. Click the OFF button to turn the HV ON. Press the run button, let
counts accumulate, and identify the prominent photo-peak. This peak corresponds to the
662 keV gamma-ray of Cs-137. The combination of high-voltage and gain determines where
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the peak appears in the MCA display. If these values are too high, the rate of gamma-ray
detection will be too rapid to observe Poisson statistics. Adjust the discriminator high and
low channel settings to bracket this peak. This can be done from the menu or by sliding the
two triangles below the x-axis. Note: This is not the same as setting the ROI.

Switch to Mode: MCS Internal. The voltage and gain should no longer be adjusted to
change the event rate since the discriminator levels will no longer be correct. The rate can
be modified with the dwell time as before and also by changing the distance between the
Cs-137 source and scintillator. If the voltage/gain must be changed to get an acceptable
event rate, the discriminator will also have to be reset in the PHA mode.

Make 3 data runs as before to attain 3 different average event rates in each interval: i) 1–2
counts, ii) 5 counts, and iii) 10 counts. Save data to disk as a tab or comma delineated file.

Analysis. Using software of your choice, plot a histogram for each of your 6 data sets. Make
sure the x-axis bins are configured for integer counts. For sufficiently low event rates, the
plotted distribution should be asymmetric and skewed towards the origin, consistent with
Poisson statistics.

There are statistical fluctuations associated with this measurement. These are distinguished
from fluctuations due to instrumental uncertainty, for example, variation of the MCA mea-
surement intervals. The statistical error can be obtained by doing this measurement repeat-
edly, but it is much easier to realize that the count in each histogram bin originates from
random events. If Ck is the count in the k-th bin, the uncertainty can be represented by the
standard deviation σk associated with Poisson statistics: σk =

√
Ck . This is an important

feature of Poisson statistics compared to a Gaussian distribution. In the latter, the standard
deviation must be determined independently. Add statistical error bars σk to each point of
your histogram.

To generate a theoretical curve, the average event rate λ is required. This should be calcu-
lated for each data set. This is not simply using the approximate target rates of 1–2, 5, 10
counts/interval, although the target rate may be similar to λ. A precise number for λ must
be obtained from the data. With Equation (1), the total number of event intervals N , and
the extracted value of λ, a Poisson curve can be generated and compared to the experimental
result. The standard deviation of the distribution is σ =

√
λ .

How does the average event rate λ ± σ compare to the counts Ck in the N individual
intervals? Can you quantify how well this rate describes what was measured in the ensemble
of intervals?

The quality or “goodness” of the Poisson curve in describing the distribution is quantified
with the parameter χ2. If there are n bins in the histogram, then

χ2 =
n∑
k

[Ck − PkN ]2

σ2
k

=
n∑
k

[Ck − PkN ]2

Ck
(2)

This characterizes the difference between experiment (Ck) and theory (PkN) at each point
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on the histogram (numerator) and the expected spread (denominator). χ2 = 0 represents
perfect agreement, but this should not happen with a statistical ensemble. Intuitively, we
expect that experimental and theoretical deviations to be about the same, i.e. χ2 ≈ n. The
expectation value is reduced by the number of degrees of freedom, which is one in this case,
leading to: 〈χ2〉 = n − 1. Perform this analysis on your data and compare to the expected
result. Further discussion can be found in the textbook by Bevington and Robinson on data
reduction and error analysis.

At higher event rates, the histograms become more symmetric and are better described by
a Gaussian distribution:

Gk =
1√
2πλ

exp

[
−(k − λ)2

2λ

]
(3)

Evaluate Eq. (3) for the three data sets without Cs-137. The Gaussian curves G can be
compared to the Poisson curves P that were obtained from Eq. (1). To do this, normalize
both curves, then calculate and plot the difference curve: (G− P )/P . Compare by plotting
this curve together with the predicted result Tk:

Tk =
δ − δ3/3λ

2λ
(4)

where δ = k − λ. This provides a clear visualization of the asymmetry. More information
can be found in the 1975 paper by L.J. Curtis on the class website.
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