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b Wihere w is the angular frequency, k is the angular wave number k = 27 /A=
w/ec, and S is the cross-sectional area of the pipe. As usual, p is the density
i of and c the velocity of sound in air. The acoustic impedance of the pipe
Iat any point z is defined to be

Pipes, Horns and Cavities
t C .
To treat this problem in more detail, we must solve the wave equation
directly in cylindrical polar coordinates (r, ¢, ). If a is the radius of the
ipe and its surface is again taken to be perfectly rigid, then the boundary
-condition is
The wave propagation phenomena in fluids th ined i : % =0 &t = &8
: at we have examined in pre- . or wores .
vious chapters have referred to waves in infinite or semi-infinite spaces
generated by the vibrational motion of some small object or surface in that g
space. We now turn to the very different problem of studying the sound -
field inside the tube of a wind instrument. Ultimately, we shall join together
the two discussions by considering the sound radiated from the open end
or 'ﬁ.nger holes of the instrument, but for the moment our concern is with
th.e mFernal field. We begin with the very simplest cases and then add com- :
Phcamons until we have a reasonably complete representation of an actual :
instrument. o
Pipes, cavities, and apertures are, however, also important in instrument
other than those of the wind family, and we will later be concerned with
sound fields inside both stringed and percussion instruments. We therefor
take the opportunity-to introduce the general methods of electric network -

analogs, which are very powerful yet very simple, for the analysis of suc
systems. =

hich implies that there is no net force and therefore no flow normal to
he wall. The wave equation in cylindrical coordinates is

10 ( 8p 18 o 18
T or (T 67‘) tEag T T 2 (85)

“and this has solutions of the form
TQmnT .
brn(ry ) = 1559 ( T2 | explihmz + o), (89

g where Jp, is a Bessel function and gmy, is defined by the boundary condition
¢ [Eq. (8.4)], so that the derivative J', (Tgmn) is zero. The (m, n) mode thus
has an (r, ) pattern for the acoustic pressure p with n nodal circles and
nodal diameters, both m and n running through the integers from zero.
Tn the full three-dimensional picture, these become nodal cylinders parallel
the axis and nodal planes through the axis, respectively.
In Fig. 8.1, the pressure and flow velocity patterns for the lowest three
‘modes of the pipe, omitting the simple plane-wave mode, are shown. The
‘pressure patterns have nodal lines as already observed, and there are similar
‘nodal diameters in the transverse flow patterns. Nodal circles for pressure
ccur for modes of the type (0, n), which have n such nodal circles within
he boundary. A general mode (m, n) has both nodal lines and circles in
he pressure.
The propagation wave vector Kmn for mode (m, n) is obtained by
stituting Eq. (8.6) into Eq. (8.5), whence

k2 = (%)2 - (wq;""y. &7

8.1 Infinite Cylindrical Pipes

The simplest possible system of enclosure is an infinite cylindrical pipe or :
!;ube with its axis parallel to the direction of propagation of a plane wave.
in the medium (Morse and Ingard, 1968). If the walls of the pipe are rigid, -
perfectly smooth, and thermally insulating, then the presence of the tubr; :
wall has no effect on wave propagation. A pressure wave propagating in the -
z direction has the form

- p(, t) = pexp[i(—kz + wt)], | o (8.1)

‘and the resultant acoustic volume flow is, as we saw in Chapter 6,
) Sp - hus, while the plane-wave mode with m = n = 0 will always propagate
Ulz,t) = (E) exp[j(—kz + wt)], '(8.2) with k = koo = w/c, this is not necessarily true for higher modes. In order
‘ - for a higher mode (m, n) to propagate, the frequency must exceed the
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FIGURE 8.1. Pr (10 o
-1. Pressure and transverse flow patterns for the lowest three transverse-;%- \// _____ W ________..
modes of a cylindrical pipe. The plane-wave mode is not shown. @ (e)

" FIGURE 8.2. Acoustic flow patterns and pressure maxima a.nd minima f.or higlt:er
modes in a cylindrical duct. (a)—(c) are modes propagating to the right aff a
frequency a little above cut-off; (d) and (e) are evanescent modes below cutoff.

critical value

. = ”q%? (89)
For frequencies less than we, kmx is imaginary and Eq. (8.6) shows that the
mode is attenuated exponentially with distance. The attenuation is quite
rapid for modes well below cutoff, and the amplitude falls by a factor e, or
about 10 dB, withih a distance less than the pipe radius. %

The first higher mode to propagate is the antisymmetric (1, 0) moc
which has a single nodal plane, above a cutoff frequency w, = 1.84c/a. Next
is the (2, 0) mode, with two nodal planes, for w > 3.05¢/a, and then the
lowest nonplanar axial mode (0, 1), for w > 3.80c/a. Propagating higher
modes are thus possible only when the pipe is greater in diameter than
about two-thirds of the free-space acoustic wavelength. The nonpropagat-
ing higher modes are necessary to explain certain features of the acoustic
flow near wall irregularities, such as finger holes or mouthpieces. Indeed,
it is possible to match any disturbance distributed over an opening or
vibrating surface in a duct with an appropriate linear combination of duct
modes. The plane-wave component of this combination will always propa-
gate along the duct away from the disturbance, but this will not be true for
modes with g, values that are too large. The propagating wave will thus
be a low-pass filtered version of the disturbance, while the nonpropagating
modes will simply modify the flow in the near neighborhood of the source.

It is helpful to sketch the three-dimensional acoustic flow streamlinés
associated with a few of these modes for both propagating and nonpropa-
gating cases. This can be done from the form of the pressure pattern given’

by Eq. (8.6) together with the relation -
| U= i—Vp (8.9)
S

' citv u in a mode excited at frequency w. Figm‘e_ 8.2 shows
i?lrist?:rf}:cl)xv: Erle,l(())) ‘a?;ld (0, 1) modes. In thfz case of the propagatllng. mo;les,
'the flow pattern itself moves down the pipe with th-e characteristic p. 1a,se
- velocity of the mode—nearly the nor;rlllalhsou:;ld velocity ¢, except very close
‘ en the phase velocity is higher than c. .

- Ii:uits? frflcj:himportaglt to go into detail about the impedance beha.vmr. ;)}1:
- these higher modes, since this depends greatly upon tihe ge?met'ry wi

" which they are driven, the net acoustic flow along .the pipe axis be;:g z(.aro
 except for the plane (0, 0) mode. The impedance is always a rea‘I nﬁlll'xic 101:
multiplied by w/kmn, 50 it is real for w above cutoff, becomes infinite a

cutoff, and is imaginary below cutoff.

‘8.2 Wall Losses .

- J . " - » _
So far in our discussion, we have assumed a rigid wall without mtr_oduc

g any other disturbance. In a practical case this can never be achlevec_l,
‘though in musical instruments the walls are at least rigid enough that their
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mechanical vibrations can be neglected—we return to the subtleties of this
statement later. More important, however, are viscous and thermal effects
from which no real walls or real fluids are immune. :

Detailed consideration of these effects is complicated (Benade, 1968), but . d
the basic phenomena and final results are easily discussed. The walls con- - 4
tribute a viscous drag to the otherwise masslike impedance associated with
acceleration of the air in the pipe. The relative magnitude of the drag de-
pends upon the thickness of the viscous boundary layer, itself proportional
to the square root of the viscosity 7 divided by the angular frequency w, in -
relation to the pipe radius a. A convenient parameter to use is the ratio of -
pipe radius to the boundary layer thickness:

1/2 .
Ty = (-‘%) a. (8.10) -

Similarly, thermal exchange between the air and the walls adds a lossy -

10\
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FIGURE 8.3. Real part of the characteristic impedance Zo, in units of pc/S, as a
. function of the parameter rv (after Benade, 1968).

resistance to the otherwise compliant compressibility of the air, and the . \
relative magnitude of this loss depends on the ratio of the pipe radius a to 1 N
the thermal boundary layer thickness, as expressed by the parametér ' = \ :
1/2 ) g
= 22%) 7, (8.11) 2
K S 0.1 N
: [
where Cy, is the specific heat of air at constant pressure and k is its thermal g \ N
conductivity. The ratio (ry/ry)? = Cpn/k is the Prandtl number. Near - - _ \k
300 K (27°C), we can insert numerical values to give (Benade, 1968) 0043 1 10 100

r

ry =~ 632.8af/2(1 ~ 0.0029 AT), (8.12) -
) FIGURE 8.4. Imaginary part of the characteristic impedance Zo, in units of pe/8S,

and
as a function of the parameter ry (after Benade, 1968).

r 7 532.8af1/2(1 ~ 0.0031 AT), (8.13) .

where a is the tube radius in meters, f is the frequency in hertz, and AT
is the temperature deviation from 300 K. 0

It is clear that the effect of these loss terms will be to change the charac-
teristic impedance Zo of the pipe from its ideal real value pc/S to a complex
quantity. This, in turn, will make the wave number k complex and lead t
attenuation of the propagating wave as it passes along the pipe.

The real and imaginary parts of the characteristic impedance Zo, as-
fractions of its ideal value pc/S, are shown in Figs. 8.3 and 8.4, both as
functions of . The correction to Zp begins to be appreciable for ry < 10,
while for 7, < 1 the real and imaginary parts of Z are nearly equal and:
vary as ryl. :

Tt is convenient to rewrite the wave vector k as the complex number w/v—
jo, where o is now the attenuation coefficient per unit length of path and
v is the phase velocity. We can then most usefully plot the phase veloci
v, measured in units of the free-air sound velocity ¢, and the attenuation
coefficient o, divided by £, both as functions of r,. This is done in Figs. 8.5

v/c /

0'010.1 1 10 100

T

Ficure 8.5. The phase velocity v, relative to the free-air sound velocity ¢, as a
8 function of the parameter v (after Benade, 1968).
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0.1 \ Jremote end, whether it is open or closed. Because we are concerned with
" “Jpipes as closely coupled driven systems, rather than as passive resonators,
“fwe shall proceed by calculating the input impedance for a finite length
- §of pipe terminated by a finite load impedance Zy,, rather than examining
‘Ydoubly open or closed pipes in isolation. The terminating impedance Zy,
qwill generally represent an open or a closed end, but it is not restricted to
~‘Ythese cases. The development here is essentially the same as that set out
Jin Chapter 2 for a string stretched between nonrigid bridges but, since the
Jresults are central to our discussion of pipes and horns, we start again from
“§the beginning,

{  Suppose the pipe extends from z = 0toz = L, and that it is terminated
Jat z = Lby the impedance Zy,. The pressure in the pipe is a superposition
1+ Fof two waves, moving to the right and left, respectively, with amplitudes A
~§and B, taken as complex quantities so that they can include a phase factor.
and 8.6. The phase velocity v is significantly less than ¢ for pipes so narrow 1 VT"hUS, 2 the point £
that ry < 10, while the attenuation coefficient exceeds A~! if r, < 6. Since q
the phase velocity and attenuation coefficient for relatively wiZle tu’t;es are ‘
both of fundamental significance for the physics of musical instruments, it is
useful to restate Benade’s (1968) versions of Rayleigh’s (1894) approxi;nate

formulas, which ar ;
They aré e good for rv > 10 and useful down to about ry = 3.

~ 1 (-1 1.65 x 102 .
v C ]. — —_ I~ - X 10 .
[ rvV/2 reV2 ] ¢ [l afl/z-_:i ) (8.14) -

w[ 1 | (y=17T . 3x107%5/2
c [TV\/Q LY ]N , (8.15)

a
where o is given in (meters)~! if a is in m i

; ‘ : eters. Here, v is the ratio of
specific heats Cp,/Cy, which for air is approximately 1.46. ©°
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FIGURE 8.6. The attenuation coeffici i ' .
: cient « in (meters)~? at_frequenc 1 :
as a/f, as a function of the parameter r, (after Benade, 1968)?1 1 plotied

p(z,t) = [Ae9ke 1 BeTko|elV". (8.16)

he acoustic particle velocity is similarly a superposition of the particle
elocities associated with these two waves and, multiplying by pipe cross
section 9, the acoustic flow becomes, from Eq. (8.3),

Ulz,t) = (pﬁc) [Ae~ik= — Belk@]el. (8.17)

At the remote end z = L, pressure and flow are related as required by the
erminating impedance Zr,, so that

p(L,t) _
m = ZL,. (818)

and this equation is enough to determine the complex ratio B/A. If we
write for the characteristic impedance of the pipe

and

Q

(2

dIn mto st _of tlhe more practical discussions that follow, we will find it -  Zo=pc/S (8.19)
adequate simply to use a complex form for &, with real and imagi ¢
. : aginary i ac | g
ip;l;csi Iiienved fr(?m Eqgs. (8.14) ar.ld (8.15). The fact that Zp has a smaﬁ 5 es in Bq. (8:3), then
i.nstf arytpa;; is not generally significant for the main pipes of musical - | B _ -2k (2 = Zo) (8.20)
tube:rée;ilnz c1>1r la fe:; discussions, such as those related to the smaller A (ZL+20) ]’ ~
er holes, the more general results sh i
necessary. ’ 8 s shown in the figures may be “and the power reflected from Zy, has a ratio to incident power of
B |Z-2%|
_|B|" o |42 8.21
R A \ 7y + Zo (8.21)

8.3 Finite Cylindrical Pipes

. Clearly, there is no reflection if Zy, = Zo and complete reflection if 2y, =0
8! or co. Since Zp is real for a lossless tube, there is also perfect reflection if
. 7, is purely imaginary; however, if Z;, has a real part that is nonzero, then
F there will always be some reflection loss.

Afll of. the pipes with which we deal in musical instruments are obviously. v
of finite length, so we must allow for the reflection of a wave from the
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The quantity in which we are interested now is the input impedance Zpy Zy | (2ka)®  (2ka)® (2ka)”

at the point £ = 0. From Egs. (8.16)-(8.19), this is =g | 3 " ws Twmamoy | (830
A+ B
. I = Zo [A - B] ! (8.22) and g is the radius of the pipe.
The behavior of R and X as functions of frequency, or more usefully as
from Eq. (8.2 o
or from Eq. (8.20), o -functions of the dimensionless quantity ka, is shown in Fig. 8.7. If ke <« 1,
Ziy = Zo [ZL cos kL + jZg sin kL] ) (823 “then |Z82meed| <« Z; and most of the wave energy is reflected from the
jZusinkL + Zgcos kL ‘open end. If ka > 2, however, then Zf2rged ~ Z, and most of the wave

‘energy is transmitted out of the end of the pipe into the surrounding air.

. In musical instruments, the fundamental, at least, has ka < 1, though
: this is not necessarily true for all the prominent partials in the sound. It is

i therefore useful to examine the behavior of the pipe in this low-frequency
£ limit. From Egs. (8.29) and (8.30), X > R if ka < 1, so that

Two important idealized cases are readily derived. The first correspo
to a pipe rigidly stopped at z = L so that Z;, = co. For such a pipe,

zitoeped — i Zocot kL. . (8.24

For the converse case of an ideally open pipe with Zr, = 0, which is
physically realizable exactly, as we see below,

ZR" = jZy tan kL. Zfenged o 70k (%’r) . (8.31)
The familiar resonance frequencies for open and stopped pipes arise from
applying the idealized condition that the input end at z = 0 is also open
so that resonances occur if Ziy = 0. For a stopped pipe, this requires thal
cot kL = 0, giving ;
.20
Stopped _ (2n ;Ll)m’ (8.26 ol T TTTm TTT ]
corresponding to an odd number of quarter wavelengths in the pipe length 0SF e -
while for an ideally open pipe, tan kL = 0, giving 03 17
o nme ; 02 X TV

< wren = T, (8.27 o1 A /] i
corresponding to an even number of quarter wavelengths, or any numbe 005} ya y -
of half wavelengths, in the pipe length. g-gg -

While Eq. (8.24) applies quite correctly to a physically stopped pipe, th ) /(
treatment of a physically open pipe is more difficult since, while Zp, <« o1
Zy, it is not a sufficient approximation to set it to zero. It is relatively 0005 -
straightforward to calculate the radiation load Zy, on a pipe that terminates 0003 Vi
in a plane flange of size much larger than a wavelength (and therefore 0.002 A -
effectively infinite). The formal treatment of Rayleigh (1894) (Morse, 1948, 0001 Z:B x 5
Olson, 1957) makes the assumption that the wavefront exactly at the open ; 00005 =
end of the pipe is quite planar, normally a very good approximation, and : 0.0003}~ "
gives the result : 00002
ZRered = R 45X, (8.28 o0 o.oaL J“clu 0.3l ““1.0 :‘z.oI H”m
ka

where, as discussed for Egs. (7.32)—(7.34),

(ka)é (ka)4 (ka)s FIGURE 8.7. The acoustic resistance R and the acoustic reactance X, both in
7 T 22.3 + 2.3 d | (8.29 ~ units of pe/ma?, for a circular piston (or open pipe) of radius a set in an infinite
: ) e i ¥ plane baffle, as functions of the frequency parameter ka (after Beranek, 1954).

R=2
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By comparison with Eq. (8.25), since ka < 1, this is just the impedance 07 ———
of an ideally open short pipe of length ' :
8a ' ]
flanged __ - 22 o
A 5 ~ 0.85a. (8.32). ]

1t is thus a good approximation in this frequency range to replace the real
flanged pipe by an ideally open pipe of length L + Afiereed, and to neglect
the radiation loss. From Fig. 8.7, it is clear that the end correction Afienged
which is proportional to X/ka, decreases slightly as ka — 1 and contmues
to decrease more rapidly as ke increases past this value.

A real pipe, of course, is not generally flanged, and we need to know ’che
behavior of Zy, in this case. The calculation (Levine and Schwinger, 1948)‘
is very difficult, but the result, as shown in Fig. 8.8, is very similar to that
for a flanged pipe. The main difference is that, for ka < 1, R is reduced
by about a factor 0.5 and X by a factor 0.7 because the wave outside the
pipe has freedom to expand into a solid angle of nearly 4r rather than just
2m. The calculated end correction at low frequencies is now

Ala

FIGURE 8.9. The calculated end correction A for a cylindricai pipe of radius a,
plotted as A/a, as a function of the frequency parameter ka, (after Levine and
Schwinger, 1948).. _

AP = (.61a. - (8.33)
The calculated variation of this end correction with the frequency
20 T I TTTT parameter ka is shown in Fig. 8.9.
10 - ;
osfE T 3
03— Zaran ]
. 02} X Tr 7 ") 8.4 Radiation from a Pipe
01k 4 -
005 - ,/ / 3 One of our later interests, of course, will be to calculate the sound radiation
003 / Y from musical wind instruments and, as part of this task, it is helpful to
002 4 ~know the transformation function between the spectrum of sound energy
001 ,/ within the pipe and the total radiated sound energy. This transformation
N4 R E is simply proportional to the behavior of R as a function of frequency, so
0005~ / - that, to a good approximation, it rises as (frequency)?, that is, 6 dB per
0003 { octave, below the reflection cutoff frequency, defined so that ka = 2. Above
0002 . - - - -
Z : this frequency, the transformation is independent of frequency. This remark
b = z R %X E refers, of course, to the total radiated power and neglects directional effects
0.0005 |- 7 = that tend to concentrate the higher frequencies at angles close to the pipe
00003 axis.
00002 - It is useful to summarize these directional effects here, since they are
0'000301 0 03' ”‘(I” 03L 110 3 OL ““10 - derived in the course of calculation of the radiation impedance Zi,. The
' ' ) b ' - flanged case is simplest (Rayleigh, 1894; Morse, 1948) and gives a radiated

_ i intensity at angle 4 to the pipe axis proportional to
FIGURE 8.8. The acoustic resistance R and the acoustic reactance X, both in . 2
units of pc/ma* for the open end of a circular cylindrical pipe of radius a, as [2-71 (ka sin 9)]

.34
functions of the frequency parameter ka (after Beranek, 1954). (8:34)

kasin @
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The result for an unflanged pipe (Levine and Schwinger, 1948) is qualita-
S tively similar except, of course, that @ can extend from 0 to 180° instea
i of just to 90°. The angular intensity distribution for this case is shown in .
Fig. 8.10 for several values of ka, the results being normalized to the power - i/8
radiated along the axis (Beranek, 1954). The directional index (DI) is the
intensity level on the axis compared to the intensity level produced by
isotropic source with the same total radiated power. The trend toward
narrower primary beam angle along the pipe axis continues for values
ka larger than those shown.

8.5 Impedance Curves

Finally, in this discussion, we should consider the behavior of pipes with"
physically realistic wall losses. Provided the pipe is not unreasonably nar: :
row, say rv > 10, then Figs. 8.3 and 8.4 show that we can neglect the small -
change in the characteristic impedance Zy and simply allow the possibi
ity that k is complex for propagation in the pipe. This new k is writte
(w/v — jo) with v given by Eq. (8.14) and « given by Eq. (8.15). This can
be simply inserted into Eq. (8.23), along with the appropriate expression -
for Z1,, to deduce the behavior of the input impedance of a real pipe. The"-
result for an ideally open pipe (Zr, = 0) of length L is

tanh oL + j tan(wL/v)
1+ jtanh oL tan(wL/v) | °

This expression has maxima and minima at the maxima and minima, r
spectively, of tan(wL /). The value of Zny at the maxima is Zg coth oL, an
at the minima it is Zy tanh aL. By Eq. (8.15), « increases with frequenc
as w!/2, so these extrema decrease in prominence at higher frequencies, an
Zin converges toward Zg. For a pipe stopped at the far end, the factor i
square brackets in Eq. (8.35) should simply be inverted.

For narrow pipes the lower resonances are dominated by this wall-lo
mechanism, but for wider open pipes radiation losses from the end b
come more important, particularly at high frequencies. To illustrate som
features of the behavior, we show in Fig. 8.11 calculated impedance curves:
for two pipes each 1 m long and with diameters, respectively, 2 cm an
10 em. The low-frequency resonances are sharper for the wide pipe th:
for the narrow pipe because of the reduced relative effect of wall dampin,
but the high-frequency resonances of the wide pipe are washed out by th
effects of radiation damping. We can see that all the impedance maxim
and minima have frequencies that are nearly harmonically related, that
is, as the ratio of two small integers. In fact, because the end correction
decreases with increasing frequency, the frequencies of these extrema are -
all slightly stretched, and this effect is more pronounced for the wide tha
for the narrow pipe.

Zmy =7y

(8.

éﬁRE 8.10. The directional patterns calculated by Levine and Schwinger for ra-
ation from an unbaffled circular pipe of radius a. The radial scale is in each case
dB and the directional index has the calculated value shown (after Beranek,
54).
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FIGURE 8.11. Magnitude of the acoustic input impedance Zin, in terms of-
the characteristic impedance Zp, for open cylindrical pipes of length 1 m and
diameters of (a) 2 em and (b) 10 cm.

It is worthwhile to note incidentally that, because these input impedance
curves have beern plotted on a logarithmic scale, the corresponding admit-
tance curves can be obtained simply by turning the impedance curve upside
down. We will see later that sometimes we will be required to think of ad-
mittance maxima and sometimes of impedance maxima, depending upon
the way in which the pipe is used.

When we come to consider musical instruments in detail, we will find
that several of them rely upon cylindrical pipes as their sound generators.
The most obvious of these is the pipe organ, in which most of the pipes are
cylindrical (a few are conical). Tone quality of air-jet-driven pipes is varied
by the use of closed and open tubes, by differences in relative diameters,
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and by differences in the sort of termination at the open end—some are
simple open ends, some have slots, some have bells, and some have narrow
chimneys. These variations can all be treated on the basis of the above
" discussion supplemented by a separate consideration of the form of Zi,
produced by the termination.

2kHz

8.6 Horns .

Following this introductory discussion of cylindrical pipes, we are now ready
to begin a treatment of sound propagation in horns, a horn being defined
" quite generally as a closed-sided conduit, the length of which is usually
large compared with its lateral dimensions. In fact, we shall only treat
explicitly horns that are straight and have circular cross section, but much
of the discussion is really more general than this. A mathematically detailed
discussion of the topic, with copious references, has been given by Campos
(1984).

Formulation of the wave propagation problem in an infinitely long horn
simply requires solution of the wave equation

2, _ 1 &%p
Vép = 2 (8.36)

subject to the condition that n - Vp = 0 on the boundaries, n being a unit
vector normal to the boundary at the point considered. More simply, we
suppose the wave to have a frequency w so that Eq. (8.36) reduces to the
Helmholtz equation

(b)

Vip+ k%p =0, (8.37)

where k = w/c. Solution of this equation is simple provided that we can
choose a coordinate system in which one coordinate surface coincides with
the walls of the horn and in which Eq. (8.37) is separable. Unfortunately,
the Helmholtz equation is separable only in coordinates that are confocal
quadric surfaces or their degenerate forms (Morse and Feshbach, 1953).
There are 11 varieties of these coordinate systems, but only a few of them
are reasonable candidates for horns. These are rectangular coordinates
(a pipe of rectangular cross section), circular cylinder coordinates, ellip-
tic cylinder coordinates, spherical coordinates (a conical horn), parabolic
coordinates, and oblate spheroidal coordinates, as shown in Fig. 8.12. Of
these, we have already dealt with the circular cylinder case, and the rect-
angular and elliptic cylinder versions differ from it only in cross-sectional
. geometry and hence in their higher modes. The parabolic horn is not musi-
cally practical since it cannot be made to join smoothly onto a mouthpiece,
' so we are left with the conical horn and the horn derived from oblate
spheroidal coordinates, which will prove to be of only passing interest.
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FIGURE 8.12. The oblate spheroidal coordinate system in which the wave equa-
tion is separable. If the hyperboloid of revolution (shown in heavy outline) is
taken as the horn, then the oblate spheroidal surfaces orthogonal to this and

- lying within it are the wave fronts. Note that such a hyperboloid horn can be

smoothly joined to a cylindrical pipe of appropriate diameter, as shown.

We deal with the oblate spheroidal case first, because it illustrates some

of the difficulties we will have to face later. The hornlike family of surfaces
consists of hyperboloids of revolution of one sheet, as shown in Fig. 8.12.
At large distances, these approach conical shapes, but near the origin they
become almost cylindrical. Indeed, one could join a simple cylinder parallel
to the axis in the lower half plane to a hyperboloid horn in the upper half
plane without any discontinuity in slope of the walls. The important thing
to notice, however, is the shape of the wavefronts as shown by the orthogo-
nal set of coordinate surfaces. These are clearly curved and indeed they are
oblately spheroidal, being nearly plane near the origin and nearly spherical
at large distances. Waves can propagate in this way as a single mode, like
the plane waves in a cylinder. Such behavior is possible only for separable
coordinate systems. For nonseparable systems that we may try to separate
approximately, there will always be an admixture of higher modes. Horn
systems resembling a cylinder joined to a narrow-angle hyperboloid horn
as described above are in fact used in many brass instruments, though not
because of any consideration of separability of the wave equation. Indeed,
once the length of the horn is made finite, we produce an unresolvable
inseparability near the open end so that there is no real practical design
assistance derived from near separability inside the horn.

Rather than setting out the exact solution for a hyperboloid or a conical
horn in detail, let us now go straight to the approximate solution for propa-
gation in an infinite horn of rather general shape. We assume that we have
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some good approximation to the shapes of the wavefronts—something more
or less spherical and, since the wave fronts must be orthogonal to the horn

~ walls, centered approximately at the apex of the cone that is locally tan-

gent to the horn walls, as shown in Fig. 8.13. This description will be exact
for a conical horn, but only an approximation for other shapes. If S(z) is
the area of this wavefront in the horn at position z, defined by its intersec-

* tion with the axis, then, during an acoustic displacement £, the fractional
« change in the volume of air in the horn at position z is (1/5)8(S¢)/0z=.
 This contrasts with the simpler expression 8¢£/8z for a plane wave in un-
- confined space. Proceeding now as for the plane-wave case, we find a wave

equation of the form

2
Y (S@)— 1 o (8.38)

Sor\"oz) oz’

- which is known as the Webster equation (Webster, 1919; Eisner, 1967), al-

though its origins date back to the time of Bernoulli. Actually, in Webster’s
case, the curvature of the wave fronts was neglected so that = was taken as
the geometrical distance along the horn axis and S as the geometrical cross
section at position z. This plane-wave approximation is good for horns that

. are not rapidly flaring, but breaks down for a horn with large flare. Various
* simple modifications to the Webster equation have been proposed (Weibel,

1955; Keefe et al., 1993), all of which improve its approximation by replac-
ing the plane-wave surfaces by curved surfaces, chosen so as to meet the
horn surface and the axis normally. All essentially ignore the transverse
flow that is necessitated by the fact that an elementary volume element
between successive wavefronts is thicker on the axis than at its edges, and
simply assume constant pressure throughout the element.

Here, as well, we have assumed that p is constant across the wave front
in the horn, which is equivalent to agsuming separability. This is not a bad
approximation for horns that do not flare too rapidly, but we must not
expect too much of it in extreme cases. In this spirit, we now make the
transformation

p=19S71/? - (8.39)

in the reasonable expectation that, with the even spreading of wave energy
across the wavefront, 1 should be essentially constant in magnitude, inde-
pendent of z. If we also assume that p varies with angular frequency w and
write S in terms of a local equivalent radius a so that

S = ma?, (8.40)
then Eq. (8.38) becomes

62'¢ 2 1 aza, _
5;2-+(k-;— b=0, (8.41)
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FIGURE 8.13. In a horn, the wavefront has approximately the form of a spherical
cap of area § and effective radius r based upon the local tangent cone and cutting
the axis at a point with coordinate z.

N

IGURE 8.14. The geometry of a horn at any one place is characterized By the
xternal longitudinal radius of curvature R and the internal transverse radius
~of curvature Rr.

where k = w/c. This form of the equation, noted by Stevenson (1951) and

later by Benade and Jansson (1974), serves as a good basis for discussion

of the behavior of horns. In a formal sense, it is the exact analog of the

Schrédinger equation in quantum mechanics, with the “horn function”

1 d%a 1 8%S 1 88 \? with o interpreted as the equivalent internal radius measured along the
( ) avefront as discussed previously.

Of particular theoretical simplicity is the class of horns called Salmon

orns (Salmon, 1946a, b), for which the horn function F, and therefore the

utoff frequency wp, is constant along the whole length of the horn (Morse,

°1948). Clearly, from Eq. (8.44), this lmplies

a = Ae™ + Be™™=, (8.45)

Sad? T 3587 457 \&o

(8.42y
taking the place of the potential.

The important thing to notice about Eq. (8.41) is that the wave function
1, and hence the original pressure wave p, is propagating or nonpropagating
according as k2 2 F, which is just what we would expect for a quantum
particle of normalized energy k? meeting a potential barrier. The frequency
w = ke for which we have equality is called the cutoff frequency at this part
of the horn. A visual estimate of the magnitude of F at a given position =
can be made, as illustrated in Fig. 8.14, by observing that a is essentially the
transverse radius of curvature Ry of the horn at point z while (d®a/dz?)™}
is close to the external longitudinal radius of curvature Ry, provided that
the wall slope da/dz is small. Thus, :

where F = m2 and m is called the flare constant. It is more convenient to
-rewrite Eq. (8.45) as

a = aglcosh(mz) + T sinh(mz)], (8.46)

vfs}here T is an alternative parameter. The pressure wave in the horn then
lias the form

L (8.43)

RyRt1 '

Of course, this is no longer a good approximation when the wall slope, or
local cone angle, is large, and we must then use the expression
1 d%a

F=a@

F =~

p= (%0) elwte=iVEI=miz (8.47)
and is nonpropagating if k < m. These expressions should strictly all
be interpreted in terms of curved wavefront coordinates, as in Fig. 8.13,
but it is usual to neglect this refinement and simply use the plane-wave

(8.44) approximation.
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The family of horns described by Eq. (8.46) has several important‘:f

where 8; = tan~! kz; and 8 = tan~! kzg, both z; and z» being mea-
degenerate forms. If T = 1, then we have an exponential horn: :

 -sured along the axis from the position of the conical apex. Similarly, for an
exponential horn of the form of Eq. (8.48) and length L,

P Zy, cos(bL + 8) + j(pc/S2) sin bL
IN'= 6, | 725 sinbL + (pc/Sz2) cos(bL — 6) |’

where b2 = k2 — m? and 6 = tan~!(m/b). It is not simple to allow for
wall effects in these expressions, since the imaginary part of k& varies with
position in the horn. For a horn with a wide mouth and not too narrow
a throat, radiation effects may dominate so that k can be taken as real.
This is, however, not a valid approximation in musical instruments, which
use long horns of quite small diameter. We shall see that more complex
calculations are necessary in such cases.

The expression [Eq. (8.51)] for the input impedance of a conical horn,
measured at the end that is at a distance z; from the apex, deserves some
further discussion. In the first place, we should note that it is applicable
for the impedance at either the wide or the narrow end of a conical pipe.
For a flaring cone, z2 > z; and L > 0, while for a tapering cone, 2 < z;
and L < 0.

In the second place, we should examine several special cases of open and

stopped cones, making the approximation that Zy, = 0 at an open end and
71, = oo at a closed end. For a cone of length L with an ideally open end
7y, = 0, Eq. (8.51) gives, for either the large or the small end of a cone,

he formal result
_afre sin kL sin #
Ziy = (51 ) Sn(kL + 61 (8.53)

{ " This does not imply that the input impedance is the same from both ends,
L since, as noted above, the sign of L and the magnitude of §; are different
in the two cases. .

Zeros in Zyy occur at frequencies for which sinkL = 0, so that these

frequencies are the same in each case and exactly the same as those for a
ylindrical pipe with the same length L. To allow for the finite reactance
‘associated with the radiation impedance Zy, it is approximately correct,
_for a narrow cone, to simply add an appropriate end correction equal to
- 0.6 times the open end radius to the geometrical length L, as discussed in
. relation to Eq. (8.33).
The infinities in Ziy occur, however, at frequencies that differ between
- the two cases and are not simply midway between those of the zeros, as
‘was the case with a cylindrical pipe. Rather, the condition for an infinity
in Zyy is, from Eq. (8.53),

a = ag exp(mz). _ (8.48).-
If T = 0, then we have a catenoidal horn: '
= ag cosh(mz), (8.49) -

which has the nice feature of joining smoothly to a cylindrical pipe ex-
tending along the negative = axis to the origin, as was the case for the
hyperboloidal horn. If T = 1/mxo and m — 0, then we have a conical
horn:

(8.52)

= ao <1 + zio) . (850)

with its vertex at —zo and a semiangle of tan™'(ao/x0). Consideration of
the value of the horn function given by Eq. (8.44) shows that F' = 0 for
this case, so that the conical horn has no cutoff.

Many of the applications of horns that are discussed in textbooks involve
situations in which the diameter of the open end of the horn is so large
that there is no appreciable reflection. The horn then acts as an efficient
impedance transformer between a small diaphragm piston in the throat and
a free spherical wave outside the mouth. Exponential and catenoidal horns
have near-unity efficiency, as defined by Morse (1948), above their cutoff
frequencies, while the efficiency of a conical horn never becomes zero but
rises gradually with increasing frequency until it reaches unity. We shall
not discuss these situations further—those interested should consult Morse
(1948) or Olson (1957). :

8.7 Finite Conical Horns

Tt is useful to quote results analogous to Eq. (8.23) for the throat
impedance of a truncated conical or exponential horn terminated by.a
mouth impedance Zy,. Typically this might be the radiation impedance at
an open mouth, for which we can use the expressions in Section 8.3, though -
these require some modification in careful work because of the curvature of i
the wavefronts (Fletcher and Thwaites, 1988). Another case of some inter
est is that in which the remote end of the horn is stopped rigidly so thal
2y, = oo.

LFor a conical horn with a throat of area S; located at position z1,
mouth of area Sy at position =3, and length L = 25 — x1, we find (Olson

1957) sin(kL + 61) = 0, (8.54)
= y r equivalently, .

pc jZu[sin(kL — 02)/ sin 82] + (pc/S2) sin kL o

S { Zefsn(kL + 01 — 02)/ sin 01 sin 8] — (jpc/S2)[sin(kL + 61)/ sin 1] | kL = nm — tan™" k. (8.55)




