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156 6. Sound Waves in Air

6.1 Plane Waves

the sound pressure or acoustic
(6.2) with Eq. (6.1),

We can call the small, varying part dpa of Ps
ressure and write it simply as p. Comparison of Eq.

Waves will propagate in any medium that has mass and elasticity, or their
equivalents in nonmechanical systems. Solid materials, which have both
shear-and compressive elasticity, allow the propagation of both shear (trans
verse) and compressive (longitudinal) waves so that their behavior can be
very complicated (Morse and Feshbach, 1953, pp. 142-151). Fluids, and
in particular gases such as air, have no elastic resistance to shear, though
they do have a viscous resistance, and the only waves that can propagat
in them are therefore longitudinal, with the local motion of the air bein,
in the same direction as the propagation direction of the wave itself.

When sound waves are generated by a small source, they spread out in al

- g% 63
p=-Kg- , (6.3)

Finally, we note that the motion of the element ABCD r.m_1st be dgscribed
by Newton’s equations so that, setting the pressure gradient force in the =
direction equal to mass times acceleration,

op _ >
-5 (-(,j—a-;da:) = pSdz 50

directions in a nearly spherical fashion. We shall look at spherical waves i ap 8% 6.4
detail a little later. It is simplest in the first place to look at a small section B Pagz: (64)
of wave at a very large distance from the source where the wave fronts car '

be treated as planes normal to the direction of propagation. In the obviou: ‘Then, from Eqs. (6.3) and (64),

mathematical idealization, we take these planes to extend to infinity so thaf 0% K 0% (6.5)
the whole problem has only one space coordinate = measuring distance i B2 = 7)- o2’

the direction of propagation.

Referring to Fig. 6.1, suppose that £ measures the displacement of the
air during passage of a sound wave, so that the element ABCD of thicknes:
dz moves to A'B'C’D’. Taking S to be the area normal to z, the volume o
this element /,fhen becomes

1, differentiating Eq. (6.5) again with respect to z and Eq. (6.3) twice with

espect to i,

Op K Op (6.6)

ot? p Oz?
Equations (6.5) and (6.6) are two different versi'ons ' of the one-
dimensional wave equation, one referring to the acoustic displacement &
and the other to the acoustic pressure p. They apply equally well to any
fluid if appropriate values are used for the bulk modulus.K and ;dlenstlltly\
p. For the case of wave propagation in air, we need to decide vyhet er the
elastic behavior is isothermal, and thus described by the equation

> V'+dV=5da:<1+§§).
oz

Now suppose that p; is the total pressure of the air. Then the bulk modulu:
K is defined quite generally by the relation

dVv
N, = - ——
. dpa K 7

psV = constant = nkT, (6.7)

or whether it is adiabatic, and so

ﬁvhere T is the absolute temperature,
‘described by

p ?’ \C F p.V" = constant, . (6.8)
' dx : here 7 = Cp/Cy = 1.418 the ratio of the 'speciﬁc heats of ai)r ?t cor.lst:gt;
l<d (1 + o¢/o > pressure and at constant volume, respectively, and pa, as beiore, 18
A;"'a : ' " : o verage atmospheric pressure.
<—->: < ;: e Clearly, the temperature tends to rise in those parts of the wave .whe.re
¢ direton he air is compressed and to fall where it is expanded. The question is,
: & (35/5)") il  therefore, whether appreciable thermal conduction can take place between
o P o hese tW(; sets of regions in the short time available as the peaks and troughs

Fletcher, 1974) that at ordinary acoustic

by. It turns out (
e tha the pr inima are so far apart that no

FIGURE 6.1. In passage of a plane wave of displacement £, the fluid on plane AB‘—"’ .
passage 0rap P ¢ P L avelengths the pressure maxima and m

is displaced to A’B’ and that on CD to C'D’.
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where k = w/c and the A and B terms represent waves traveling to the
right and the left, respectively. {If we adopt the .conventions of quantum me-
chanics and write time dependence as exp(—iwt), as for example in Morse
(1948), then j should be replaced by —i.] i
If we consider a wave of angular frequency w traveling in the +z direction,
then we can set B = 0 and A = 1 in Eq. (6.15) and write

p = e IR  cos(—kz + wt), (6.16)

appreciable conduction takes place, and the behavior is therefore adiabatic. -
Only at immensely high frequencies does the free-air propagation tend to
become isothermal. For sound waves in pipes or close to solid objects, on the
other hand, the behavior also becomes isothermal at very low frequencies—
below about 0.1 Hz for a 20 mm tube. Neither of these cases need concern
us here.

Taking logarithms of Eq. (6.8) and differentiating, we find, using

Eq. (6.2),

where the second form of writing is just the real part of the first. From

or, if we write u for the acoustic fluid velocity 8¢/0t and remember that
k = w/e, then

K =7pa, " 6.9 : .
VPa (6.9) Eq. (6.5), ¢ has a similar form, though with a different amplitude and |
so that Eq. (6.6) becomes perhaps a phase factor. We can connect p and ¢ through Eq. (6.4), from |
52 52 . ‘which
op _ 207 - (6.10) ’
a2 = ¢ a2’ . . AL . e
gkp = jpw 5 (6.17)

=K (6.11)
PP
and similarly for £ from Eq. (6.5). As we shall see in a moment, the quantity
¢ is the propagation speed of the sound wave. ’
1t is easy to verify, by differentiation, that possible solutions of the wave
equation [Eq. (6.10)] have the form :

p(z,t) = fi(z — ct) + fa(z + ct), (6.12)

‘where fi.and f; are completely general continuous functions of their argu-
ments. We can also see that fi(z — ct) represents a wave of arbitrary spatial
shape fi(z — zo) or of arbitrary time behavior fi(cto — ct) propagating in
the +z direction with speed c. Similarly, fa(z + ct) represents a different
wave propagating in the —z-direction, also with speed c. In the case of air,
or any other nearly ideal gas, Eqgs. (6.7) and (6.11) show that

7\ 12 ,

am=(g) e (613)
To

where ¢(T) is the speed of sound at absolute temperature T'. There is,

however, no variation of ¢ with atmospheric pressure. For air at temperature .
AT degrees Celsius and 50% relative humidity,

¢ ~ 332(1 + 0.00166 AT) ms~?, (6.14)

p = pcu. (6.18)

The acoustic pressure and acoustic fluid velocity (or particle velocity) in
the propagation direction are therefore in phase in a plane wave.
This circumstance makes it useful to define a quantity z called the wave
impedance (or sometimes the specific acoustic impedance): . N
. M Y
| (P

z= % = pe. v u% (6.19) :

is clearly a property of the medium and its units are Pa m™! s or kg
‘=2 57!, sometimes given the name rayls (after Lord Rayleigh). For air at
perature AT°C and standatd pressure, -

pe = 428(1 — 0.0017 AT) kg m 257", (6.20)

In much of our discussion, we will need to treat waves in 3 space |
~dimensions. The generalization of Eq. (6.10) to this case is |

% = c*Vp. (6.21)
s differential equation can be separated in several coordinate systems
o give simple treatments of wave behavior (Morse and Feshbach, 1953,
p. 499-518, 655-666). Among these are rectangular coordinates, leading
mply to three equations for plane waves of the form of Eq. (6.10), and
pherical polar coordinates, which we consider later in this chapter.

giving ¢ = 343 m s~1 at room temperature.

The wave equation [Eq. (6.10)] was discussed in detail in Chapter 2~
in relation to waves on a string, and its two-dimensional counterpart in
Chapter 3. There is no need to repeat this discussion here except to remind
ourselves that it is usual to treat Eq. (6.10) in the frequency domain where-

the solutions have the form . ‘
p = Ae~i%2eiwt 1 Belkoelt, (6.15)




When a wave encounters any variation in the propérties of the medium
in which it is propagating, its behavior is disturbed. Gradual changes in i
“the medium extending over many wavelengths lead mostly to a change
the wave speed and propagation direction—the phenomenon of refraction.
When the change is more:abrupt, as when a sound wave in air strikes a solid
object, such as a person or a wall, then the incident wave is generally mostly
reflected or scattered and only a small part is transmitted into or through
the object. That part of the wave energy transmitted into the object will
generally be dissipated by internal losses and multiple reflections unless
the object is very thin, like a lightweight wall partition, when it may be ..
reradiated from the opposite surface. §

Tt is worthwhile to examine the behavior of a plane pressure wave A
moving from a medium of wave impedance z; to one of impedance z3. In- -
general, we expect there to be a reflected wave Bef*® and a transmitted
wave Ce7%%, The acoustic pressures on either side of the interface must
be equal, so that, taking the interface to be at x = 0, <o
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-and the transmitted intensity It by

& _ 42221
Iy (2421

Clearly, the transmitted intensity is nearly zero if there is a large acoustic
“mismatch between the two media and either za > 2y or z2 < z1.
These results can be generalized to the case of oblique incidence of a
‘plane wave on a plane boundary (Kinsler et al., 1982, pp. 131-133), and
‘we then encounter the phenomenon of refraction, familiar from optics, with
“the reciprocal of the velocity of sound ¢; in each medium taking the place
-of its optical refractive index.
All these results can be extended in a straightforward way to include
" cases where the wave impedances z; are complex quantities (r; + jz:)
rather than real. In particular, the results [Eqs. (6.39) and (6.40)] carry
‘over directly to this more general situation, the reflection and transmission
oefficients generally depending upon the frequency of the wave.
If the surface of the object is flat, on the scale of a sound wavelength, and
ts extent is large compared with the wavelength, then the familiar rules
f geometrical optics are an adequate approximation for the treatment of
eflections. It is only for large areas, such as the walls or ceilings of concert
alls, that this is of more than qualitative use in understanding behavior
Beranek, 1962; Rossing, 1982; Meyer, 1978).
~ At the other extreme, an object that is small compared with the wave-
ength of the sound wave involved will scatter the wave almost equally in
all directions, the fractional intensity scattered being proportional to the
sixth power of the size of the object. When the size of the object ranges
from, for example, one-tenth of a wavelength up to 10 wavelengths, then
scattering behavior is very complex, even for simply shaped objects (Morse,
1948, pp. 346-356; Morse and Ingard, 1968, pp. 400-449). i
. There is similar complexity in the “sound shadows” cast by objects.
Objects that are very large compared with the sound wavelength create
well-defined shadows, but this situation is rarely encountered in other than
architectural acoustics. More usually, objects will be comparable in size to
the wavelength involved, and diffraction around the edges into the shadow
zone will blur its edges or even eliminate the shadow entirely at distances
a few times the diameter of the object. Again, the discussion is complex
even for a simple plane edge (Morse and Ingard, 1968, pp. 449-458). For
the purposes of this book, a qualitative appreciation of the behavior will
be adequate..
Even in an unbounded uniform medium, such as air, a sound wave is
attenuated as it propagates, because of losses of various kinds (Kinsler
ot al., 1982, Chapter 7). Principal among the mechanisms responsible are
‘viscosity, thermal conduction, and energy interchange between molecules
with differing external excitation. If we write

k— Lic) - ja, (6.41)

(6.40)

e‘jkm .

A+B=C: (6.35)

Similarly, the displacement velocities must be the same on either side of the
interface, so that, using Eq. (6.19) and noting the sign of k for the various -

waves,

A-8_C (6.36)

21 2z

We can now solve Egs. (6.35) and (6.36) to find the reflection coefficient:

A 22+Z1l

b B_n-xn (6.37)

~

and the transmission coefficient:
o 222

A otz
These coefficients refer to pressure amplitudes. If zz = z1, then B =0
and C = A as we should expect. If 23 > 2j, then, from Eq. (6.37), the
reflected wave is in phase with the incident wave and a pressure maximum
is reflected as a maximum. If zp < 21, then there is a phase change of 180°
between the reflected wave and the incident wave and a pressure maximum
is reflected as a minimum. If 22 > 2 or 23 K 21, then reflection is nearly
total. The fact that, from Eq. (6.38), the transmitted wave will have a
pressure amplitude nearly twice that of the incident wave if zp > 7 is not
a paradox, as we see below, since this wave carries a very small energy.
Perhaps even more illuminating than Eqs. (6.37) and (6.38) are the cor-
responding coefficients expressed in terms of intensities, using Eq. (6.32). If
the incident intensity is Io = A%/zy, then the reflected intensity I is given

by

-I;= 2tz

L (u)z | (6.39}'
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detail, but we shall select particular examples and relate the conclusion to
L the simplified treatments given in the earlier sections of this chapter.

"' The integral in Eq. (7.29) can be performed quite straightforwardly for
the case of a circular piston of radius a with u constant across its surface."
The result for the far field (Morse, 1948, pp. 327-328) is "

Referring to Fig. 7.7, suppose that the area S on an otherwise rigid.
plane baffle is vibrating with a velocity distribution u(r’ } and frequency w'’
normal to the plane, all points being either in phase or in antiphase. The
small element of area dS at r’ then constitutes a simple source of volume:
strength u(r')dS, which is doubled to twice this value by the presence of
the plane, which restricts its radiation to the half-space of solid angle 2.

Th d; duced by this el i i —gkr . i
e pressure dp produced by this element at a large distance r is | pr jwpua® (e ) [2‘711c (ka.sn; 0)} , (7.30)
JWP _jkje—r'|, (ot ' r a sin
dp(r) = oo € J u(r’)dS. (7.28)

g where Jy is a Bessel function of order one. The factor in square brackets
If we take T to be in the direction (6, ¢) and r’ in the direction (x/2,¢'), ;fis nearly unity for all 8 if ka < 1, so the radiation pattern in the half-
then we can integrate Eq. (7.28) over the whole syrface of the plane, £ space 0 < 6 < 7/2 is isotropic at low frequencies. For higher frequencies,
remembering that © = 0 outside 3, to give - :the bracket is unity for § =0 and falls to zero when the argument of the
‘Bessel function is about 3.83, that is for

g* = sin™! (%3) : ' (7.31)

he angular width 26* of the primary radiated beam thus decreases nearly
nearly with frequency once ka > 4. There are some side lobes, but the
first of these is already at —18 dB relative to the response for 6 =0, so0
hey are relatively minor.

The force F acting on the piston (Morse, 1948, pp. 332-333; Olson, 1957,
p. 92-93) is ’

p(r,0,¢) = %%e_jk T / / edkr’ $i"‘9°°s("f_"y)u(r’)r’ d¢' dr’.  (7.29)
r S .

The integral in Eq. (7.29) has the form of a spatial Fourier transform of
the velocity distribution u(r’). This is our general result, due in the first
place to Lord Rayleigh. s

It is now simply a matter of algebra to apply Eq. (7.29) to situations
of interest. These include a rigid circular piston and a flexible circular
piston (Morse, 1948, pp. 326-335) and both square and circular vibrators
excited in patterns with nodal lines (Skudrzyk, 1968, pp. 373-429; Junger

and Feit, 1986, Chapter 5). There is not space here to review this work in F=(Rn+ij Xm)u. = pcSu(A + jB), (7.32)

r(0,¢) A=1— J1(2ka) _ (ka)? _ (ka)* N (ka)® -
ka 2 22.3 22.32.4 )
— 3(ka)? for ka < 1;
—1 for ka>1, (7.33)
B Hi(2ka) 1 (2ka)®  (2ka)® + (2ka)”
u=0 T ka  mk2a? 3 32.5 32.52.7
— 8ka/3w for ka <1,
— 2/wka for ka > 1, ' ' (7.34)

where Hj is a Struve function of order 1. These functions, which apply also
to a pipe with an infinite baffle, are shown later in Fig. 8.7. For the moment,
we simply note the close agreement between their asymptotic forms and
the same quantities for a pulsating sphere of radius a as given in Eq. (7.25)
and Fig. 7.6. '

FIGURE 7.7. A vibrating plane source set in an infinite plane baffle. Radiation 43
pressure is evaluated at a point at a large distance r in the direction shown.



