Physics 307L

Spring 2021
Prof. Darcy Barron
Probability Distribution Functions

Reminders

- Schedule of assignment due dates through the end of the semester is now posted on wiki, and in Teams
- https://ghz.unm.edu/juniorlab/index.php?title=Schedule_Spring_2021\#Cour se_Schedule
- Schedule for Talk 2 is posted, first talks April 19, 26
- To get full credit, you need to submit your slides at least 1 hour ahead of time (submit through assignment in Teams)
- See talk 2 scoring rubric (slide 3)
- Lab report 2 due Wed, April 28 by noon
- Working on giving detailed feedback on lab report 1 this week
- Lab report 3 is due Wed, May 12
- You must use LaTeX for this final lab report.
- Ask if you need help finding and using an appropriate template
- See resources in Lecture 5

Talk 2 Rubric

- Expect everyone talk for at least 7 minutes and have at least 7 content slides
- Must send your slides at least one hour in advance of lecture start to get full credit
- Need to ask at least one question of another presenter to get full credit
- Score breakdown
- Written Slides - 20\%
- Oral Presentation - 20\%
- Technical Content - 50\%
- Questions and Discussion - 10\%

AAS Chambliss Student Achievement Awards Judging Form: Undergraduate Students

Poster Number:
Judge's Name:
Student's Name:

Judging Times: Morning breaks (9:30 am to 10:00 am) and again during the afternoon poster session (5:30 pm to 6:30 pm Mon., Tue., \& Wed.; 1:00 pm to 2:00 pm Thu).
If student is not present at his/her poster at either of the judging time, his/her poster is disqualified. Simply check this box \square and return this form to the AAS registration desk.
Directions: Content is weighted by $2 / 3^{\text {rd }}$ and Presentation by $1 / 3^{\text {rd }}$. Circle one underlined response in each of the brackets for EACH BULLET that best describes this student's poster and presentation. Enter the corresponding number (1, 2, 3, or 4) in the Score column. Sum the Score column and enter the score in the Total Score cell.

	Judging Criteria	4=Exemplary (accomplished); 3=Proficient (effective); 2=Basic (limited); 1=Below Basic (lacking)	Score
	Conceptual Understanding of Research Within the Broader Context of Astronomy	- Student [easily and concisely (4) / sufficiently (3) / is somewhat able to (2)/ struqques to or cannot (1)] describe(s) the outstanding question(s) or gap(s) in our understanding of astronomy related to their work.	$\times 2=$
		- Student [easily and concisely (4) / sufficiently (3) / is somewhat able to (2) / struqqles to or cannot (1)] describe(s) how their work could potentially help to answer these questions.	$\times 2=$
	Knowledge of How the Research was Conducted	- Student [easily and concisely (4) / sufficiently (3) / is somewhat able to (2) / struagles to or cannot (1)] describe(s) their methods of data collection and analysis, as well as their key physical assumptions.	$\times 2=$
		- Student [easily and concisely (4)/ sufficiently (3) / is somewhat able to (2) / struqqles to or cannot (1)] describe(s), when appropriate, errors in and/or limitations of their methods of data collection and analysis, as well as their key physical assumptions.	$\times 2=$
	Understanding of the Results and Implications of the Research	- Student [easily and concisely (4) / sufficiently (3) / is somewhat able to (2) / struqqles to or cannot (1)] describe(s), when appropriate, how their results and implications of their work did improve our understanding of astronomy.	$\times 2=$
		- Student [easily and concisely (4) / sufficiently (3) / is somewhat able to (2) / struqqles to or cannot (1)] describe(s), when appropriate, errors in and/or limitations of their results and implications of how their work did not help to improve our understanding of astronomy.	$2=$
	Poster Mechanics	- Poster [easily and concisely (4) / sufficiently (3) / somewhat (2) / limits or prohibits (1)] leads/leading Reader through a logical flow from (e.g.) title, to introduction, explanation of work, summary/conclusion, and references.	
		- Graphics include [all (4) / sufficiently (3) / some (2) / almost no (1)] appropriate labels and units.	
	Verbal Organization of Research	- Student's oral presentation was [extremely (4) / sufficiently (3) / somewhat (2) / limited in being or was not (1)] clear, concise, and logical.	
		- Listener could [easily (4) / sufficiently (3) / somewhat (2) $/$ was limited in or could not (1)] follow(ing) lines of reasoning.	
	Verbal Interaction with Others	- Student was [extremely (4) / sufficiently (3) / somewhat (2) / struaaled to be or was/did not (1)] articulate, use proper volume, use appropriate language for the Student's level of education/expertise, and convey a high level of confidence/poise.	
		- Student was [extremely (4) / sufficiently (3) / somewhat (2) / mostly not or not (1)] consistent and adequate in responding to questions, including clarifying and restating as necessary.	
		TOTAL SCORE	

Error Analysis

- Some steps in error analysis so far
- Estimating uncertainties from equipment
- Repeating measurements to estimate uncertainty
- Propagating uncertainties
- Plotting and correlating data
- Choosing how to combine separate measurements, and possibly rejecting/cleaning data
- Least-squares fitting with errors in both dimensions
- There are many techniques for fitting and analyzing your experimental data to understand its statistics and sources of random/statistical error

What are statistics?

- A statistic summarizes data (data reduction)
- Statistics are the basis for using the data to make a decision
- Example: Is the faint smudge on an image a star or a galaxy?
- Measure FWHM of the point-spread function.
- Measure full-width-half-maximum, the FWHM.
- The data set, the image of the object, is now represented by a statistic

Median value of a data ensemble $m_{1 / 2}$

$$
\text { Half of all data }>m_{1 / 2}
$$

Half of all data $<m_{1 / 2}$

Deviation of a data point about the mean: $\quad d_{i}=x_{i}-\bar{x}$
Average deviation: $\bar{d}=\bar{x}-\bar{x}=0 \quad$ Not useful
Variance: $\quad \sigma^{2}=\frac{1}{N-1} \sum_{i}^{N} d_{i}^{2}=\frac{1}{N-1} \sum_{i}^{N}\left(x_{i}-\bar{x}\right)^{2}$
Standard deviation: $\sqrt{\sigma}$

What is statistical analysis?

- 1. Formulate a hypothesis
- 2. Gather data to test the hypothesis (via experiment, or by finding existing datasets)
- 3. Compare with the expected probability of that result (the sampling distribution)

Problems:
We don't know the actual underlying distribution

Small sample size

Important uses of statistics

- Statistics can create precise statements for stating the logic of what we are doing and why
- Statistics allow us to quantify uncertainty
- Measured quantities are basically useless without some measure of the associated range/error
- Sometimes this can be inferred, but much better to be explicit (e.g. 5 photons, 72.1 degrees)
- Statistics help us avoid pitfalls like confirmation bias
- Statistics help make decisions about data

PROBABILITY DISTRIBUTION FUNCTIONS

- GAUSSIAN: Random data, experimental parameters uncertain Described in Chapter 5 of Taylor
- POISSON: Number of counts in a specified time interval Described in Chapter 11 of Taylor
- BINOMIAL: Small number of possible outcomes (eg. heads or tails) Described in Chapter 10 of Taylor

These are models that may describe your data.

Poisson Statistics Modeling

PROBABILITY DISTRIBUTION FUNCTIONS

- GAUSSIAN: Random data, experimental parameters uncertain
- POISSON: Number of counts in a specified time interval
- BINOMIAL: Small number of possible outcomes (eg. heads or tails)

BINOMIAL DISTRIBUTION: 1 COIN

OR

$p=50 \%$
$p=50 \%$

BINOMIAL DISTRIBUTION: 2 COINS

$p=25 \%$

BINOMIAL DISTRIBUTION: 3 COINS

8 DIFFERENT OUTCOMES: $p=12.5 \%$

SAME COIN TOSSED 3 TIMES

8 DIFFERENT OUTCOMES: $\boldsymbol{p}=12.5 \%$

Possible states for the coin: $S=2$
Number of coins flipped once: N

- or -

Number of times single coin is flipped: N
Possible outcomes $=S^{N}=2^{3}=8$

Possible states for single die: $S=6$
Number of times a single die is thrown: $N=1$
Possible outcomes $=S^{N}=6^{1}=6$

Possible states for single die: $S=6$
Number of dice thrown: $N=2$
Possible outcomes $=S^{N}=6^{2}=36$

PERMUTATIONS

6 different winners are possible

EXACTA: Pick the correct order of finish 1-2

6 different winners are possible
Once winner is specified only five $2^{\text {nd }}$ places possible Number of different $1-2$ sequences $=6 \times 5=30$

TRIFECTA: Pick the correct order of finish 1-2-3

6 different winners are possible
Once winner is specified only five $2^{\text {nd }}$ places possible; then four $3^{\text {rd }}$ place finishes possible Number of different 1-2-3 sequences $=6 \times 5 \times 4=120$

Number of different race outcomes: 1-2-3-4-5-6

$6 \times 5 \times 4 \times 3 \times 2 \times 1=\mathbf{7 2 0}$ different outcomes $=N!$

P : Number of possible PERMUTATIONS

N : Number of trials, events, participants, etc
x : Sequence of outcomes

$$
P=\frac{N!}{(N-x)!}
$$

Winner: $\quad P=\frac{6!}{(6-1)!}=6$
Exacta: $\quad P=\frac{6!}{(6-2)!}=30$
Trifecta: $\quad P=\frac{6!}{(6-3)!}=120$
6 horses in order: $\quad P=\frac{6!}{(6-6)!}=720$

COMBINATIONS:

Possible outcomes irrespective of order
Assume $N=6$ horses
First place: $C=6$ possible winners
Places 1-2: $C=15$

$1-2$	$2-3$	$3-4$	$4-5$	$5-6$
$1-3$	$2-4$	$3-5$	$4-6$	
$1-4$	$2-5$	$3-6$		
$1-5$	$2-6$			
$1-6$				

Places 1-2-3: $C=20$

$1-2-3$	$1-4-5$	$2-4-6$
$1-2-4$	$1-4-6$	$2-5-6$
$1-2-5$	$1-5-6$	$3-4-5$
$1-2-6$	$2-3-4$	$3-4-6$
$1-3-4$	$2-3-5$	$3-5-6$
$1-3-5$	$2-3-6$	$4-5-6$
$1-3-6$	$2-4-5$	

C: Number of possible COMBINATIONS

N : Number of trials, events, participants, etc
x : Number of outcomes, order does not matter

$$
C=\frac{N!}{(N-x)!x!}=\binom{N}{x}
$$

Possible winners: $\quad C=\frac{6!}{(6-1)!1!}=6$
Possible top-2 finishers: $\quad C=\frac{6!}{(6-2)!2!}=15$
Possible top-3 finishers: $\quad C=\frac{6!}{(6-3)!3!}=20$
Possible top-6 finishers: $\quad C=\frac{6!}{(6-6)!6!}=1$

POWER (10)
 [POWERPLAY'

Prize: \$1,000,000

POWER (10)
 [POWERPLAY'

$\overbrace{}^{\longrightarrow} 5$ of 69 numbers:

$$
C=\frac{69!}{(69-5)!5!}=\frac{69 \times 68 \times 67 \times 66 \times 65}{5 \times 4 \times 3 \times 2 \times 1}=11,238,513
$$

\square
$26 \times 11,238,513=292,201,338$

COMBINATIONS: Same coin tossed 3 times

COMBINATIONS: Same coin tossed 3 times

All 3 tosses are heads:

$$
C=\frac{3!}{(3-3)!3!}=1
$$

COMBINATIONS: Same coin tossed 3 times

2 of 3 tosses are heads:

$$
C=\frac{3!}{(3-2)!2!}=3
$$

COMBINATIONS: Same coin tossed 3 times

1 of 3 tosses are heads: $\quad C=\frac{3!}{(3-1)!1!}=3$

COMBINATIONS: Same coin tossed 3 times

$\mathbf{0}$ of $\mathbf{3}$ tosses are heads: $C=\frac{3!}{(3-0)!0!}=1$

PROBABILITIES: Same coin tossed 3 times

$$
P_{B}=\frac{N!}{(N-x)!x!} p^{x}(1-p)^{N-x} \quad \begin{aligned}
& \text { Heads: } p=1 / 2 ; \\
& \text { Tails: } 1-p=1 / 2
\end{aligned}
$$

$P_{B}:$ BINOMIAL DISTRIBUTION

3 of 3 tosses are heads: $\quad P_{B}(x=3)=1 \times(1 / 2)^{3}(1 / 2)^{3-3}=\frac{1}{8}$ $\mathbf{2}$ of $\mathbf{3}$ tosses are heads: $\quad P_{B}(x=2)=3 \times(1 / 2)^{2}(1 / 2)^{3-2}=\frac{3}{8}$ 1 of $\mathbf{3}$ tosses are heads: $\quad P_{B}(x=1)=3 \times(1 / 2)^{1}(1 / 2)^{3-1}=\frac{3}{8}$ $\mathbf{0}$ of $\mathbf{3}$ tosses are heads: $\quad P_{B}(x=0)=1 \times(1 / 2)^{0}(1 / 2)^{3-0}=\frac{1}{8}$ Probabilities sum to 1

PROBABILITY DISTRIBUTION:

Number of HEADS occurring on 3 consecutive coin flips

PROBABILITY that exactly $x=1$ SIX appears in $N=2$ rolls of the die [or one roll of two dice]:

$$
P_{B}=\frac{2!}{1!(2-1)!} \times\left(\frac{1}{6}\right)^{1}\left(1-\frac{1}{6}\right)^{2-1}=\frac{10}{36}
$$

PROBABILITY DISTRIBUTION: SIX appearing on pair of dice

Toss same coin tossed $\boldsymbol{N}=10$ times

x : Number of times HEADS appears

$$
P_{B}=\frac{N!}{(N-x)!x!} p^{x}(1-p)^{N-x} \quad \begin{aligned}
& \text { Heads: } p=1 / 2 ; \\
& \text { Tails: } 1-p=1 / 2
\end{aligned}
$$

PROBABILITY DISTRIBUTION:
Number of HEADS occurring on 10 consecutive coin

BINOMIAL DISTRIBUTION

$$
\begin{aligned}
\text { Mean: } & N p=5 \\
\text { Variance: } & \sigma^{2}=N p(1-p)=2.5 \\
\text { Standard Deviation: } & \sqrt{\sigma}=\sqrt{N p(1-p)}=1.58
\end{aligned}
$$

A Binomial Distribution may be Symmetric or Asymmetric

POISSON DISTRIBUTION

An approximation to the Binomial distribution
Probability p gets small
Large number trials: N is big
Typically: Counting x events occurring in a time interval
Events individually distinguishable; uncorrelated
Mean rate: $\mathrm{I}=N p$
Standard deviation: $\sigma=\sqrt{\lambda}$

$$
P_{P}=\frac{\lambda^{x}}{x!} e^{-\lambda}
$$

EXAMPLE: NUCLEAR DECAY

Half-life: Multiple years \longrightarrow Decay probability p very small
Number of nucleii N very large
Mean rate: $\mathrm{I}=N p$;
...but N and p are likely unknown!

I = Total events counted
Total observation time

$$
P_{P}=\frac{\lambda^{x}}{x!} e^{-\lambda}
$$

EXAMPLE: NUCLEAR DECAY

Count number of radioactive decays x in a series of intervals of duration t
Plot on a histogram:

EXAMPLE: NUCLEAR DECAY

Comparing experiment with theory

EXAMPLE: NUCLEAR DECAY

PROBABILITY DISTRIBUTION FUNCTIONS

- GAUSSIAN: Random data, experimental parameters uncertain
- POISSON: Number of counts in a specified time interval
- BINOMIAL: Small number of possible outcomes (eg. heads or tails)

GAUSSIAN DISTRIBUTION aka "The Bell Curve"

An approximation to the Binomial distribution
Number of trials N gets large
$N p \gg 1$
Most experimental distributions are Gaussian
Most probable result is the AVERAGE result
$P_{G}=\frac{1}{\sigma \sqrt{2 \pi}} \exp \left[-\frac{1}{2}\left(\frac{x-\bar{x}}{\sigma}\right)^{2}\right]$
\bar{x} : Average or mean of the data
σ : Standard deviation of the data

GAUSSIAN DISTRIBUTION aka "The Bell Curve"

$$
\begin{aligned}
& P_{G}=\frac{1}{\sigma \sqrt{2 \pi}} \exp \left[-\frac{1}{2}\left(\frac{x-\bar{x}}{\sigma}\right)^{2}\right] \\
& \text { Peak of curve: } \quad x=\bar{x} \quad \bar{x}=\frac{1}{N} \sum_{i} x_{i} \\
& \sigma^{2}=\frac{1}{N-1} \sum_{i}^{N}\left(x_{i}-\bar{x}\right)^{2}
\end{aligned}
$$

When we average a set of data, the implicit assumption is a Gaussian Distribution

$$
P_{G}=\frac{1}{\sigma \sqrt{2 \pi}} \exp \left[-\frac{1}{2}\left(\frac{x-\bar{x}}{\sigma}\right)^{2}\right]
$$

CAUTION: Sometimes

 written with $w$$$
\begin{aligned}
& P_{G}=\frac{1}{w} \sqrt{\frac{2}{\pi}} \exp \left[-2\left(\frac{x-\bar{x}}{w}\right)^{2}\right] \\
& w=2 \sigma
\end{aligned}
$$

$$
P_{G}=\frac{1}{\sigma \sqrt{2 \pi}} \exp \left[-\frac{1}{2}\left(\frac{x-\bar{x}}{\sigma}\right)^{2}\right]
$$

There is a 68% chance that a measurement will lie within $\bar{x} \pm \sigma$

Number of HEADS occurring on 10 consecutive coin flips

BINOMIAL DISTRIBUTION

Fitting with a Gaussian

$$
P_{G}=\frac{1}{\sigma \sqrt{2 \pi}} \exp \left[-\frac{1}{2}\left(\frac{x-\bar{x}}{\sigma}\right)^{2}\right]
$$

$$
\begin{aligned}
\bar{x} & =\frac{1}{N} \sum_{i}^{N} x_{i} \\
\sigma & =\sqrt{\frac{1}{N-1} \sum_{i}\left(x_{i}-\bar{x}\right)^{2}} \\
\bar{x} & =5 \\
\sigma & =1.64
\end{aligned}
$$

Experimental Radioactive Decay Data

Experimental Radioactive Decay Data

Distribution fit with a Gaussian Curve

Recall that:

Poisson transitions to Gaussian as data count rate increases

Uncertainty of the Mean Value: $\bar{x} \pm$?

- Gaussian distribution; N data points
- Uncertainty of distribution: s
- Uncertainty in Mean decreases with N

$$
\bar{x} \pm \frac{\sigma}{\sqrt{N}}
$$

N : 10 coin flips
x : Number of heads occurring
$\sigma=1.64$
$\bar{x}=5 \pm \frac{\sigma}{\sqrt{N}}=5 \pm 0.52$

Implications of increasing N

$$
\bar{x} \pm \frac{\sigma}{\sqrt{N}}
$$

Assumes all data in distribution has same uncertainty

As $N \rightarrow \infty$, accuracy becomes perfect i.e. no error!

Acquiring huge amount of data may not be possible
Experiment may drift with time: Systematic error
Very difficult to eliminate all systematic errors

Comparing Distribution Functions

Binomial: Probability of observing x in N trials when the probability p of x occurring is known

$$
P_{B}=\frac{N!}{(N-x)!x!} p^{x}(1-p)^{N-x}
$$

Poisson: Approximation to Binomial
Values of x are strictly bounded $x \geq 0$

$$
P_{P}=\frac{\lambda^{x}}{x!} e^{-\lambda}
$$ Primary useful for low data/count rates Standard deviation: $\sigma=\sqrt{\lambda}$ Asymmetric distributions

Gaussian: Approximation to Binomial
Usually more convenient for analyzing experiments $x<0$ allowed

$$
P_{G}=\frac{1}{\sigma \sqrt{2 \pi}} \exp \left[-\frac{1}{2}\left(\frac{x-\bar{x}}{\sigma}\right)^{2}\right]
$$

