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Reminders
• Schedule of assignment due dates through the end of the semester 

is now posted on wiki, and in Teams
• https://ghz.unm.edu/juniorlab/index.php?title=Schedule_Spring_2021#Cour

se_Schedule

• Schedule for Talk 2 is posted, first talks April 19, 26
• To get full credit, you need to submit your slides at least 1 hour ahead of 

time (submit through assignment in Teams)
• See talk 2 scoring rubric (slide 3)

• Lab report 2 due Wed, April 28 by noon
• Working on giving detailed feedback on lab report 1 this week

• Lab report 3 is due Wed, May 12
• You must use LaTeX for this final lab report.
• Ask if you need help finding and using an appropriate template
• See resources in Lecture 5



Talk 2 Rubric

• Expect everyone talk for at least 7 minutes and 
have at least 7 content slides

• Must send your slides at least one hour in advance 
of lecture start to get full credit

• Need to ask at least one question of another
presenter to get full credit

• Score breakdown
• Written Slides – 20%
• Oral Presentation – 20%
• Technical Content – 50%
• Questions and Discussion – 10%





Error Analysis

• Some steps in error analysis so far
• Estimating uncertainties from equipment
• Repeating measurements to estimate uncertainty
• Propagating uncertainties
• Plotting and correlating data
• Choosing how to combine separate measurements, and 

possibly rejecting/cleaning data
• Least-squares fitting with errors in both dimensions

• There are many techniques for fitting and analyzing 
your experimental data to understand its statistics 
and sources of random/statistical error



What are statistics?

• A statistic summarizes data (data reduction)
• Statistics are the basis for using the data to make a 

decision
• Example: Is the faint smudge on an image a star or 

a galaxy?
• Measure FWHM of the point-spread function.
• Measure full-width-half-maximum, the FWHM.
• The data set, the image of the object, is now 

represented by a statistic



Median value of a data ensemble m1/2

Half of all data > m1/2

Half of all data < m1/2

Deviation of a data point about the mean:

Average deviation: Not useful

Variance:

Standard deviation:



What is statistical analysis?

• 1. Formulate a hypothesis
• 2. Gather data to test the hypothesis (via 

experiment, or by finding existing datasets)
• 3. Compare with the expected probability of that 

result (the sampling distribution)

Problems:
We don’t know the actual underlying 

distribution
Small sample size



Important uses of statistics

• Statistics can create precise statements for stating 
the logic of what we are doing and why

• Statistics allow us to quantify uncertainty
• Measured quantities are basically useless without some 

measure of the associated range/error
• Sometimes this can be inferred, but much better to be 

explicit  (e.g. 5 photons, 72.1 degrees)

• Statistics help us avoid pitfalls like confirmation bias
• Statistics help make decisions about data



PROBABILITY DISTRIBUTION FUNCTIONS

• GAUSSIAN: Random data, experimental parameters uncertain
Described in Chapter 5 of Taylor

• POISSON: Number of counts in a specified time interval
Described in Chapter 11 of Taylor

• BINOMIAL: Small number of possible outcomes (eg. heads or tails)
Described in Chapter 10 of Taylor

These are models that may describe your data.



Poisson Statistics Modeling



PROBABILITY DISTRIBUTION FUNCTIONS

• GAUSSIAN: Random data, experimental parameters uncertain

• POISSON: Number of counts in a specified time interval

• BINOMIAL: Small number of possible outcomes (eg. heads or tails)



BINOMIAL DISTRIBUTION: 1 COIN

p=50% p=50%

OR



BINOMIAL DISTRIBUTION: 2 COINS

p=25%

p=25%

p=25%

p=25%



BINOMIAL DISTRIBUTION: 3 COINS

8 DIFFERENT OUTCOMES: p = 12.5%



SAME COIN TOSSED 3 TIMES

8 DIFFERENT OUTCOMES: p = 12.5%



Possible states for the coin: S = 2

Number of coins flipped once: N

– or –

Number of times single coin is flipped: N

Possible outcomes = SN = 23 = 8



Possible states for single die: S = 6

Number of times a single die is thrown: N = 1

Possible outcomes = SN = 61 = 6



Possible states for single die: S = 6

Number of dice thrown: N = 2

Possible outcomes = SN = 62 = 36



PERMUTATIONS

Starters: N = 6

6 different winners are possible



EXACTA: Pick the correct order of finish 1-2

Starters: N = 6

6 different winners are possible
Once winner is specified only five 2nd places possible
Number of different 1-2 sequences = 6 x 5 = 30



TRIFECTA: Pick the correct order of finish 1-2-3

Starters: N = 6

6 different winners are possible
Once winner is specified only five 2nd places possible; then four 3rd place finishes possible
Number of different 1-2-3 sequences = 6 x 5 x 4 = 120



Number of different race outcomes: 1-2-3-4-5-6

Starters: N = 6

6 x 5 x 4 x 3 x 2 x 1 = 720 different outcomes = N!



P: Number of possible PERMUTATIONS

N: Number of trials, events, participants, etc

x: Sequence of outcomes



Winner:

Exacta:

Trifecta:

6 horses in order:



COMBINATIONS:
Possible outcomes irrespective of order

Assume N = 6 horses

First place: C = 6 possible winners

Places 1-2: C = 15 1-2 2-3 3-4 4-5 5-6
1-3 2-4 3-5 4-6
1-4 2-5 3-6
1-5 2-6
1-6

1-2-3 1-4-5 2-4-6
1-2-4 1-4-6 2-5-6
1-2-5 1-5-6 3-4-5
1-2-6 2-3-4 3-4-6
1-3-4 2-3-5 3-5-6
1-3-5 2-3-6 4-5-6
1-3-6 2-4-5

Places 1-2-3: C = 20



C: Number of possible COMBINATIONS

N: Number of trials, events, participants, etc

x: Number of outcomes, order does not matter

Possible winners:

Possible top-2 finishers:

Possible top-3 finishers:

Possible top-6 finishers:



5 of 69 numbers:

Prize: $1,000,000



5 of 69 numbers:

1 of 26 numbers:
26 x 11,238,513 = 292,201,338



COMBINATIONS: Same coin tossed 3 times



COMBINATIONS: Same coin tossed 3 times

All 3 tosses are heads:



COMBINATIONS: Same coin tossed 3 times

2 of 3 tosses are heads:



COMBINATIONS: Same coin tossed 3 times

1 of 3 tosses are heads:



COMBINATIONS: Same coin tossed 3 times

0 of 3 tosses are heads:



PROBABILITIES: Same coin tossed 3 times

3 of 3 tosses are heads:

2 of 3 tosses are heads:

1 of 3 tosses are heads:

0 of 3 tosses are heads:

Heads: p = 1/2;
Tails: 1 – p = 1/2

Probabilities sum to 1

PB: BINOMIAL DISTRIBUTION



PROBABILITY DISTRIBUTION:
Number of HEADS occurring on 3 consecutive coin flips

BINOMIAL DISTRIBUTION



PROBABILITY that exactly x=1 SIX appears in N=2 rolls of the die
[or one roll of two dice]:



PROBABILITY DISTRIBUTION:
SIX appearing on pair of dice

Probability of zero SIXES: 25/36

Probability of one SIX: 10/36

Probability of two SIXES: 1/36

BINOMIAL DISTRIBUTION



Toss same coin tossed N = 10 times

x: Number of times HEADS appears

Heads: p = 1/2;
Tails: 1 – p = 1/2



PROBABILITY DISTRIBUTION:
Number of HEADS occurring on 10 consecutive coin 

BINOMIAL DISTRIBUTION



BINOMIAL DISTRIBUTION

Mean:

Variance:

Standard Deviation:

A Binomial Distribution may
be Symmetric or Asymmetric



POISSON DISTRIBUTION
An approximation to the Binomial distribution

Probability p gets small

Large number trials: N is big

Typically: Counting x events occurring in a time interval

Events individually distinguishable; uncorrelated

Mean rate: l = Np

Standard deviation:



EXAMPLE: NUCLEAR DECAY
Half-life: Multiple years → Decay probability p very small

Number of nucleii N very large

Mean rate: l = Np;
...but N and p are likely unknown!

l =   Total events counted
Total observation time



EXAMPLE: NUCLEAR DECAY
Count number of radioactive decays x in a series of intervals of duration t

Plot on a histogram:

256 intervals
Asymmetric distribution
Most intervals count x = 4 decays



EXAMPLE: NUCLEAR DECAY

Statistical error = √Counts
Applies to Poisson Distribution only!

Comparing experiment with theory

THEORY:



EXAMPLE: NUCLEAR DECAY
Experiment repeated with same number of
measurement intervals

But much higher count rate

As p increases, distribution becomes
more symmetric

Transitions to Gaussian



PROBABILITY DISTRIBUTION FUNCTIONS

• GAUSSIAN: Random data, experimental parameters uncertain

• POISSON: Number of counts in a specified time interval

• BINOMIAL: Small number of possible outcomes (eg. heads or tails)



GAUSSIAN DISTRIBUTION
aka “The Bell Curve”

An approximation to the Binomial distribution

Number of trials N gets large

Np >> 1

Most experimental distributions are Gaussian

Most probable result is the AVERAGE result

: Average or mean of the data

: Standard deviation of the data



GAUSSIAN DISTRIBUTION
aka “The Bell Curve”

Peak of curve:

When we average a set of data, the implicit assumption is
a Gaussian Distribution



CAUTION: Sometimes
written with w



2s = w

There is a 68% chance that a measurement will lie within



Number of HEADS occurring on 10 consecutive coin flips

BINOMIAL DISTRIBUTION

Mean:

Variance:

Standard Deviation:



Fitting with a Gaussian



Experimental Radioactive Decay Data



Experimental Radioactive Decay Data

Distribution fit with a Gaussian Curve



POISSON GAUSSIAN

Recall that:
Poisson transitions to Gaussian as data count rate increases



Uncertainty of the Mean Value:
• Gaussian distribution; N data points
• Uncertainty of distribution: s
• Uncertainty in Mean decreases with N

N: 10 coin flips

x: Number of heads occurring



Implications of increasing N

Assumes all data in distribution has same uncertainty

As N →∞, accuracy becomes perfect i.e. no error!

Acquiring huge amount of data may not be possible

Experiment may drift with time: Systematic error

Very difficult to eliminate all systematic errors



Comparing Distribution Functions

Poisson: Approximation to Binomial
Values of x are strictly bounded x ≥ 0
Primary useful for low data/count rates
Standard deviation:
Asymmetric distributions

Gaussian: Approximation to Binomial
Usually more convenient for analyzing experiments

x < 0 allowed

Binomial: Probability of observing x in N trials when the probability p
of x occurring is known
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