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Reminders

* Schedule of assignment due dates through the end of the semester
is now posted on wiki, and in Teams

* https://ghz.unm.edu/juniorlab/index.php?title=Schedule_Spring_2021#Cour
se_Schedule

e Schedule for Talk 2 is posted, first talks April 19, 26

* To get full credit, you need to submit your slides at least 1 hour ahead of
time (submit through assignment in Teams)

* Try to wear lab-safety-appropriate long pants and closed-toed
shoes, especially if you are working on an experiment with clear
hazards (high voltage, lead bricks)

* Send an email and stay home if you aren’t feeling well



Error Analysis

* Some steps in error analysis so far

e Estimating uncertainties from equipment
Repeating measurements to estimate uncertainty
Propagating uncertainties
Plotting and correlating data

Choosing how to combine separate measurements, and
possibly rejecting/cleaning data

* Least-squares fitting with errors in both dimensions

* There are many techniques for fitting and analyzing
your experimental data to understand its statistics
and sources of random/statistical error



Chauvenet’s Criterion

* If you make N measurements of a single quantity x,
Chauvenet’s criterion gives a simple test for
deciding whether to reject a ‘suspect value’
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*n = N XProb(outside ty,;0)
* Use Appendix A to look up values

* If n < 0.5, then it is reasonable to reject x
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The slope = 0.9974273274123038, with uncertainty
0.0012558490265354887 The intercept = 0.9282554690792497,

with uncertainty 0.6452914621011211



Speed of Light Data — Our Class
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Speed of Light Data — Our Class
Best fit to data from 5 students

le-9
Theory with fitted offset
} Data

~
s

o

v
i

RA2 =0.997

Difference in arrival time (seconds)
F =y

3 -
0.0 02 0.4 056 038 10 12
Difference in path length (roundtrip) (meters)
The slope = 3.4470692242258648e-09, with uncertainty 1.74102526619175%9e-11
The intercept = 3.111703798698238e-09, with uncertainty 1.298000077865901e-11
The speed of light = 290101513.76480633
Can we reject the hypothesis that the speed of light is 299,700,000 m/s in our lab?




How do we estimate systematic errors?

* We have identified some straightforward examples,
which are closely related to how we estimate
uncertainty from equipment

e Systematic error in approach to measure distance

* Front vs back vs middle of a line or edge

* Especially relevant for us when combining measurements from
different students

e Systematic error from backlash in a knob
e Systematic error from calibration of oscilloscope
e Other examples?



How do we estimate systematic errors, in
experiments with unknown results?

* Experimental design can sometimes lend itself to
measuring a ‘null’ result (or at least a consistent result)
which helps quantify systematic errors

 Example (Balmer Series): We could carefully compare
line position with knob going one direction, to line
Bosition going the other direction. Since we expect it to
e the same, we can compare to understand the
rbna Titl#]de of the systematic error coming from
acklash.

* You could either take data in a consistent direction to
avoid backlash, or oluantify its effect on your data (for
example, if it is negligible compared to another
unavoidable error



How do we estimate systematic errors, in
experiments with unknown results?

* Experimental design can sometimes lend itself to
measuring a ‘null’ result (or at least a consistent
result) which helps quantify systematic errors

* Example (Speed of Light): We cannot claim that we
are measuring the speed of light with our setup,
since there are systematic errors beyond our
capability of measuring.

* Need an absolute reference for time to calibrate

* We could still use the setup to accurately measure
the index of refraction of a material. Why?



How do we estimate systematic errors, in
experiments with unknown results?

* Experimental design can sometimes lend itself to
measuring a ‘null’ result (or at least a consistent
result) which helps quantify systematic errors

* Example (Poisson Statistics): We measured the
background rate without a radioactive source to
guantify the expected level of signal from other
sources (cosmic rays, other radioactive elements in
surroundings, background noise in detector)

* This background follows nice Poisson statistics, but can
be considered a systematic effect

* Can’t tell exactly where each ‘hit” came from, can only
guantify expected level of background hits



How do we estimate systematic errors, in
experiments with unknown results?

e What if we can’t do direct measurements?



Simulating experiments

e Often in real experiments, analytical calculations,
estimates, and experimental data are not sufficient
to fully understand the magnitude of sources of
error, and how they can interact

e Systematic errors also typically have random
fluctuations, and can fluctuate up and add together
all at once making a big outlier in your data

* VVery important to understand sources of
uncertainty for reporting new results



Simulating experiments

* Many decisions to be made and justified on how to
set up a full simulation
* What ‘shortcuts’ are ok and why?
* What effects are important to model accurately?
 What framework to use to allow for future capacity?
 What resources are available?
 What are the limitations of the simulation?

* How does simulation compare to actual data?



Poisson Statistics Modeling

* We set up a ‘toy model’ for understanding the
experiment and what would be needed to simulate
it accurately.

* This can be useful for designing an experiment and
understanding its limitations  wceues
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Poisson Statistics Modeling

* https://trinket.io/glowscript/8060842cfb



Poisson Statistics Modeling

Cs-137 Source Decays Since Creation
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Poisson Statistics Modeling

59 Decays per 1587312 Seconds Plotted with Analytical Prediction
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Poisson Statistics Modeling

Decays per 2419.2 Seconds Plotted with Analytical Prediction
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Poisson Statistics Modeling
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Poisson Statistics Modeling
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Poisson Statistics Modeling

. 107 comparison of Poissonian to simulated data
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Accounting for Experimental Uncertainties
(from Friday’s colloc

Effect

Laser Frequency

uium by Holger Mueller)

0.16 pp

> systematic errors

1 N/A

-0.24 £ 0.03

Acceleration Gradient
Gouy phase

Wavefront Curvature
Beam Alignment

BO Light Shift

Density Shift

Index of Refraction
Speckle Phase Shift
Sagnac Effect

Mod. Frequency
Wavenumber

Thermal Motion of Atoms
Non-Gaussian Waveform
Parasitic Interferometers
Total Systematic Error
Total Statistical Error
Electron Mass (18)
Cesium Mass (4,17)

4A  P=(2.13 +0.01)x10/s? -1.69 £ 0.02 B |g
3 W(=3.21+0.008 mm, z,=0.5+1.0 m -3.60+ 0.03
12 (r2)12=0.58 mm 0.15+0.03
5 N/A 0.05£0.03
6 N/A 0+0.004
7 p=10° atoms/cm? 0+0.003
8 Nyoug-1=30x10-12 0+0.03
4B N/A 0+0.04
9 N/A 0+0.001
10 N/A 0+0.001 ; N eW’
11 N/A 0+0.08
13 N/A 0+0.03
14  N/A 0+0.03
-5.33 £0.12
+0.16
5.48579909067x10% u +0.02
132.9054519615 u +0.03



Accounting for Experimental Uncertainties
(from Friday’s colloquium by Holger Mueller)
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Morel, Yao, Cladé, and Guellati-Khélifa 2020, Nature 588, 61-65



