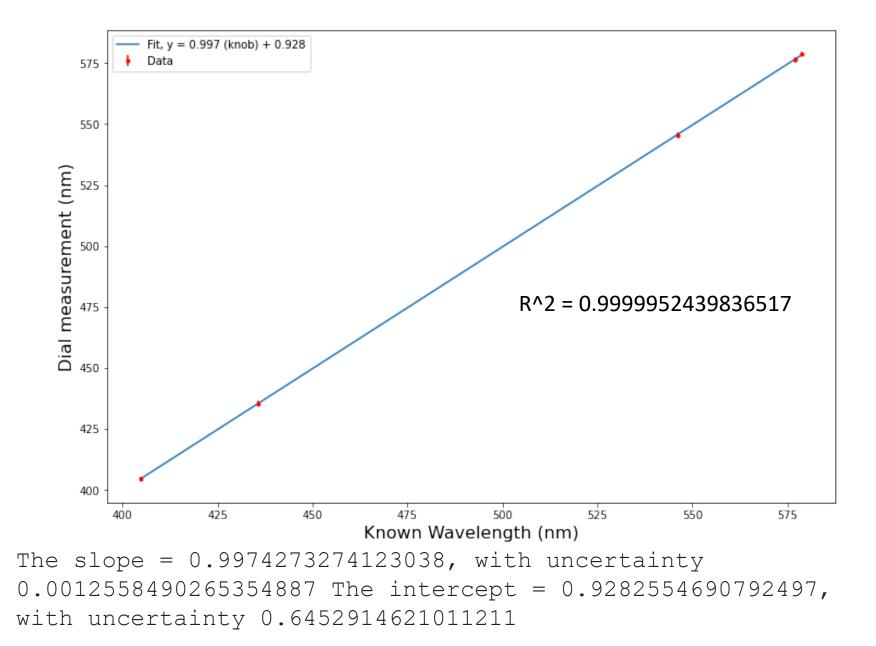
Physics 307L

Spring 2021 Prof. Darcy Barron


This lecture will be recorded

Updated Schedule

- Schedule of assignment due dates through the end of the semester is now posted on wiki, and will be in Teams soon
 - https://ghz.unm.edu/juniorlab/index.php?title=Schedule_Spring_2021#Cour se_Schedule
- First lab report due date is this Wed, March 31
 - Please ask if you have questions about completing the analysis for the experiment you write about in Lab Report 1
 - Lab report cannot be on Lab 0
 - <u>https://ghz.unm.edu/education/juniorlab_pdfs/labreportguidelines.pdf</u>
- Schedule for Talk 2 is posted
- All students will give Talk 3 during scheduled during final exam time for this class, Friday, May 14 from 12:30pm – 2:30pm
 - This should not conflict with any other scheduled finals, but please let me know if there is a problem

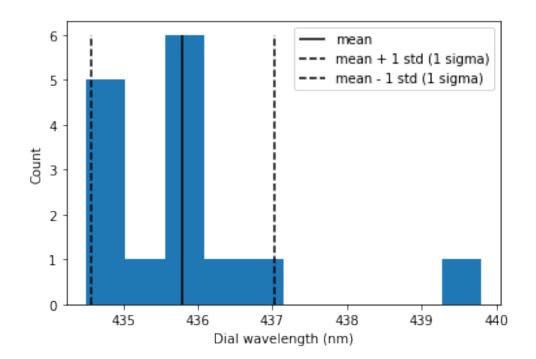
Balmer Series Analysis

- Straightforward steps
 - Estimating uncertainties from equipment
 - Repeating measurements to estimate uncertainty
 - Propagating uncertainties
 - Simple linear fit to data
- More complex steps
 - Rejecting data (Chapter 6 of Taylor)
 - Choosing how to combine separate measurements
 - Least-squares fitting with errors in both dimensions

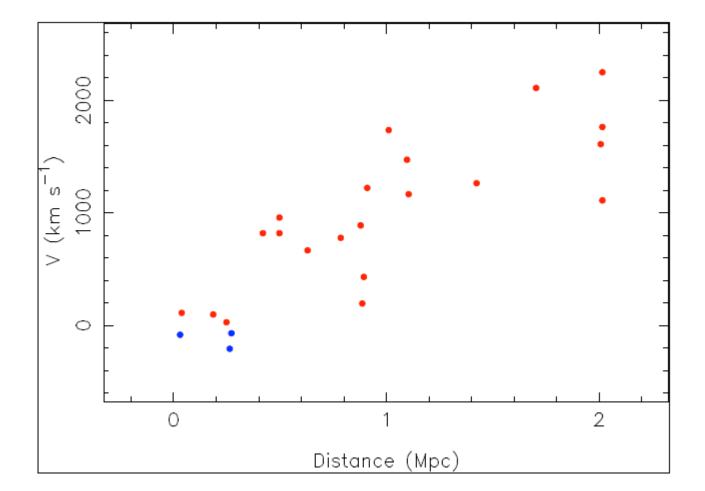
Chauvenet's Criterion

 If you make N measurements of a single quantity x, Chauvenet's criterion gives a simple test for deciding whether to reject a 'suspect value'

•
$$t_{sus} = \frac{|x_{sus} - \bar{x}|}{\sigma_x}$$


- $n = N \times Prob(outside t_{sus}\sigma)$
 - Use Appendix A to look up values
- If n < 0.5, then it is reasonable to reject x_{sus}

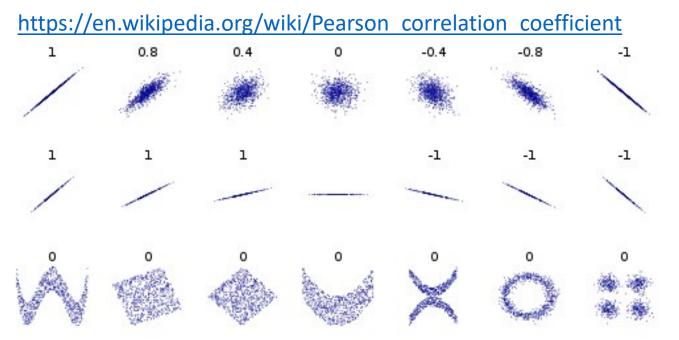
- We make 10 measurements of length, x, and get these results:
 - 46, 48, 44, 38, 45, 47, 58, 44, 45, 43
 - What is the mean of the dataset? **45.8**
 - What is the standard deviation? 5.1
 - What is the suspicious value? **58**
 - What is probability that such an outlier would appear from random chance?
 - 0.016


- Multiple measurements of second shortest wavelength line of mercury emission
- [437, 435.0, 435, 434.5, 439.8, 435.4, 435.6, 435.7, 436.2, 435.7, 436.0, 435.7, 435.8, 434.8, 434.8]
- What is mean? What is standard deviation?
 - 435.8, 1.23
- What value is suspect? 439.8
- Should it be thrown out and why?

- Multiple measurements of second shortest wavelength line of mercury emission
- [437, 435.0, 435, 434.5, 439.8, 435.4, 435.6, 435.7, 436.2, 435.7, 436.0, 435.7, 435.8, 434.8, 434.8]
- Should it be thrown out and why?
 - Probably!
 - t-score is 3.24, so this is a 3-sigma outlier
 - 99.73% of random fluctuations will fall within 3 sigma of mean
 - So, there is a less than 0.27% chance one value would fluctuate this far away
 - We have 15 values, so there's a 4% chance it could have happened in this dataset
 - There is reasonable suspicion that the value might have been written down incorrectly or some other fluke, so it seems ok to throw it out

- Multiple measurements of second shortest wavelength line of mercury emission
- [437, 435.0, 435, 434.5, 439.8, 435.4, 435.6, 435.7, 436.2, 435.7, 436.0, 435.7, 435.8, 434.8, 434.8]

Fitting data to a model



An early Hubble diagram, N=24 galaxies (1936)

Simplifying correlations

- Linear correlations are easy to plot and examine
- Linear fit
 - y=mx+b
- Can linearize your data to make it a linear correlation
 - Example: Balmer Series
 - $1/\lambda = R [1/2^2 1/n^2]$
 - Set $y = 1/\lambda$
- Proportional correlation is special case of linear fit where y-intercept is fixed at zero
 - y = mx

Pearson's correlation coefficient

 Pearson's correlation coefficient, r, measures the linear correlation between two variables

Linear correlations are easy to plot and examine

Anscombe's quartet y₂ 12 14 **X**1 **X**2 • y₃ Y4 -4 12 14 16 18 14 16 18 X_4 **X**3

Property	Value	Accuracy
Mean of x	9	exact
Sample variance of x	11	exact
Mean of y	7.50	to 2 decimal places
Sample variance of y	4.125	±0.003
Correlation between x and y	0.816	to 3 decimal places
Linear regression line	y = 3.00 + 0.500x	to 2 and 3 decimal places, respectively
Coefficient of determination of the linear regression	0.67	to 2 decimal places

Plotting data can provide insight on trends not captured by statistics

https://en.wikipedia.org/wiki/Anscombe%27s_quartet

Speed of Light Analysis

- For our setup measuring the speed of light, we strongly expect to get data that fits a straight line
- For most ways of recording data, the data follows a linear fit with y = mx + b
- For some ways of recording data, it is a proportional fit y = mx
- What is the meaning of the slope?
- What is the meaning of the y-intercept?

Speed of light experimental design

- Without recording any data, we can say a few things about the capabilities and limitations of the experiment
 - We are performing the experiment on an optics table, so our maximum length is of order 1 meter, and our uncertainty is of order 0.5 cm
 - Placement error gets multiplied by 2 because roundtrip
 - We are using a fast pulsed laser and a fast oscilloscope, which sets our time resolution to ~ 0.5 ns
 - Are we limited by the laser, or the oscilloscope, or...?
 - How well calibrated is the oscilloscope?
- Expect ~ 5-10% in systematic errors in our measurement of the speed of light in one leg of the optical path, limited by uncertainties in time measurement
- Can measure time delay added by adding something to optical path (acrylic rod), and derive index of refraction (with length)

Least-squares fitting

- Procedure described in Taylor Chapter 8
- Fitting multiple data points to a line can tell us how well the data is described by a linear fit, and gives a measure of statistical (random) fluctuations in our data set, or any lurking remaining systematic errors
- Just like with statistics (mean, standard deviation), knowing how it is done is important, so good to do it 'by hand' a few times
- However, also important to learn (and understand) at least one way to do it through programming
 - Excel, Python, Matlab, etc.
 - <u>https://ghz.unm.edu/juniorlab/index.php?title=ErrorAnalysis</u>
 - Can get into many variations once you start to weight data (touched on in Chapter 7 – weighted averages)

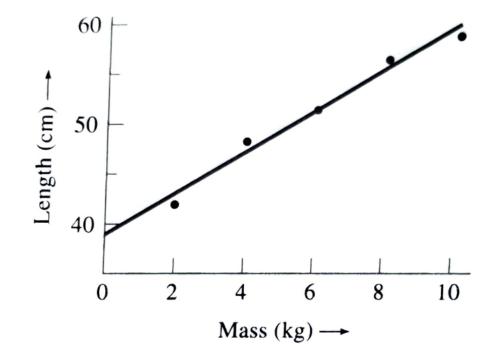
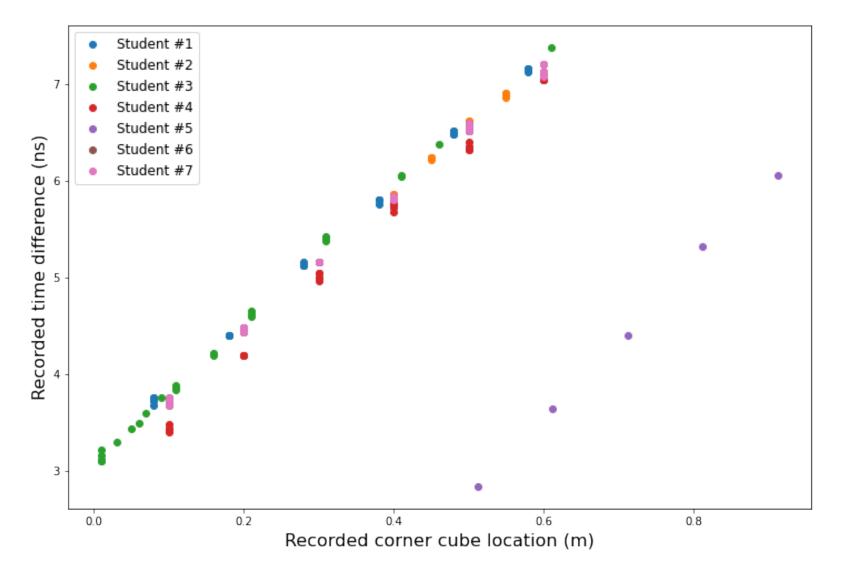
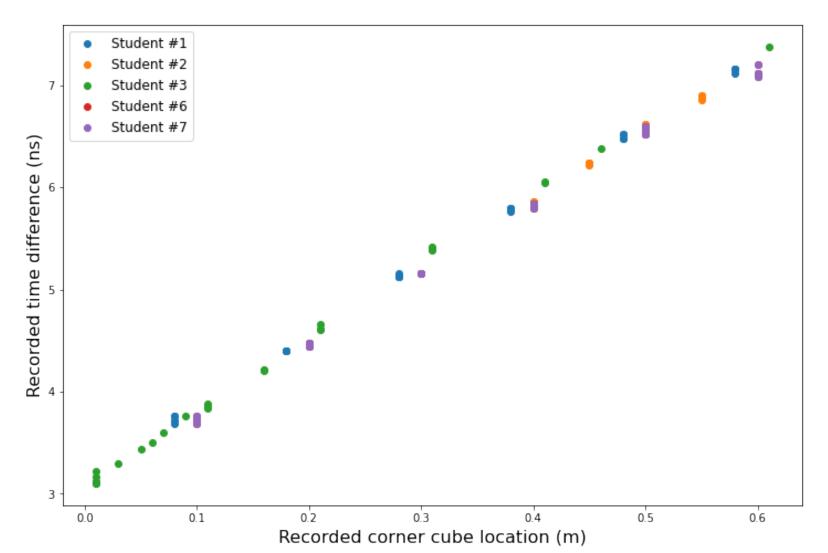
Example in Taylor

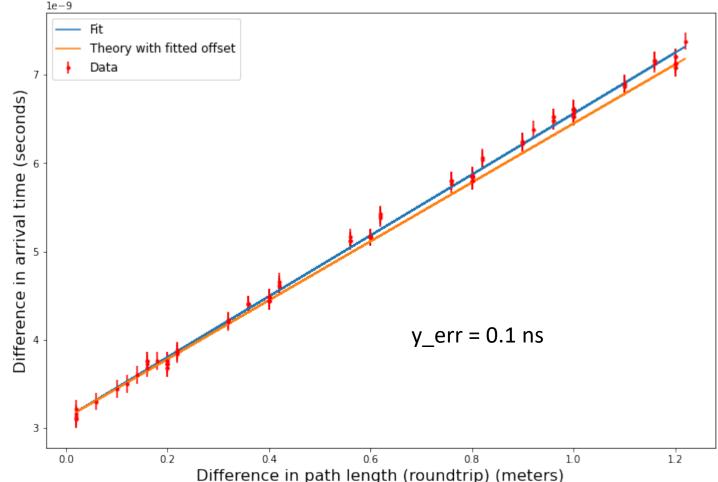
Section 8.2 Calculation of the Constants A and B

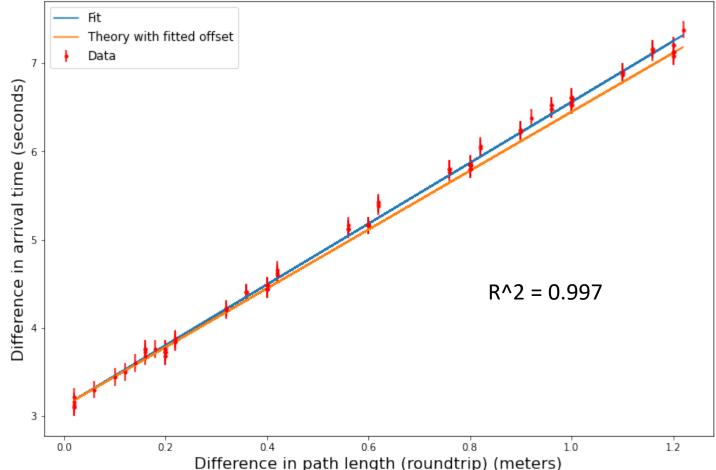
Table 8.1. Masses m_i (in kg) and lengths l_i (in cm) for a spring balance. The "x" and "y" in quotes indicate which variables play the roles of x and y in this example.

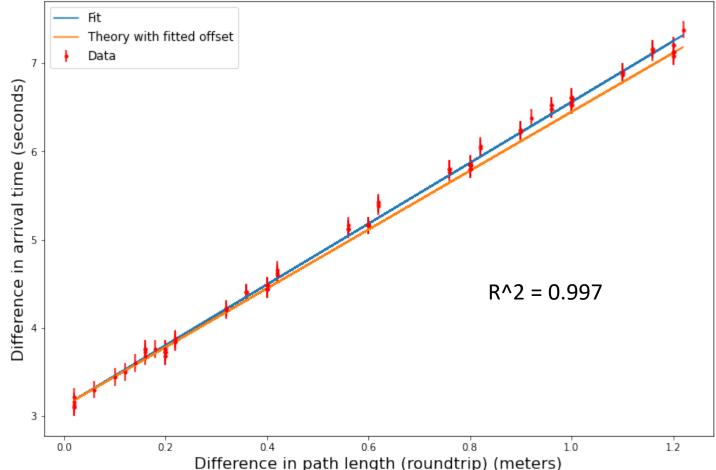
Trial number <i>i</i>	"x" Load, m_i	"y" Length, l_i	m_i^2	$m_i l_i$
1	2	42.0	4	84
2	4	48.4	16	194
3	6	51.3	36	308
4	8	56.3	64	450
5	10	58.6	100	586
<i>N</i> = 5	$\sum m_i = 30$	$\sum l_i = 256.6$	$\sum m_i^2 = 220$	$\sum m_i l_i = 1,622$

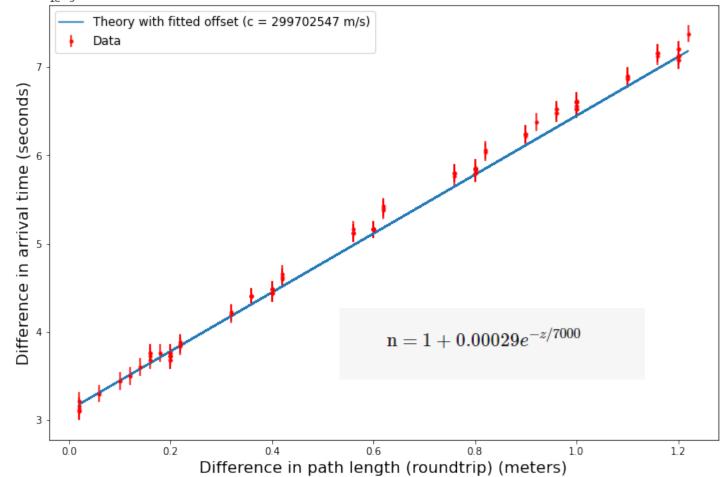
Example in Taylor


Figure 8.2. A plot of the data from Table 8.1 and the best-fit line (8.13).


Speed of Light Data – Our Class


Speed of Light Data – Our Class Scrubbed of Inconsistent Data



The slope = 3.4470692242258648e-09, with uncertainty 1.741025266191759e-11 The intercept = 3.111703798698238e-09, with uncertainty 1.298000077865901e-11 The speed of light = 290101513.76480633

The slope = 3.4470692242258648e-09, with uncertainty 1.741025266191759e-11 The intercept = 3.111703798698238e-09, with uncertainty 1.298000077865901e-11 The speed of light = 290101513.76480633

Can we reject the hypothesis that the speed of light is 299,700,000 m/s in our lab?

Examples of student notebooks

X0:0 DE0 = 2.00	K=0 DE0=2.6MAN
Trial /	Trial 2
$\Delta x = \Delta (\Delta \epsilon)$	Ax A(AE)
10.0m 0.8405	10.0cm 0.765
20,000 Dellass This was	10000 20.0cm (156ns)
30.0cm \$2.36n5 (.60 and	211 1 2 40
40.0 cm 3.08 ms	40,00m 3.08ng
50.0cm 3.809	500cm 3.6845
60,0cm 4,49 m 5	OUNA 4.40ms
	++-
Ko=0 Lite = 2.60ng	X0=0, Dto=2.0AS
Trial 3	Trial 4
DX D(GE) 8	AX D(bt)
10.0cm 0.80h3	(0.000 -2.505 0.84ms
20,02m 1.60ns	20.0cm 1.60h3
30,0cm 2,44hs	30.0cm 2.40h3
40,0cm 3.16hs	40.0cm 3.16hs
50, 900 3,7245	50,0cm 3.7645
60. Dun 4. HHAG	60, 0cm 4,44,45

distance	51.25cm	51,25cm	71,25 cm	81,25 cm
temporal seperation	2.84 ns	3.64ns	9.4ns	5.32 ns

The add	od diet	anco to the ligh	t boom is rough		m with Form	the dictoree fr	com the hea	m colittor t	o the mirror in th	no cotun
The auu	eu uisi	ance to the light	it bearins rougi	ily 2(x+5)ci	n with och	the distance in	officine bea	in spiller t		ie setup
Data										
			Trial 1	Trial 2	Trial 3	Trial 4	Mean			
x (m)		2x+0.1 (m)	t (ns)	t (ns)	t (ns)	t (ns)	t (ns)			
	0.58	1.26	7.16	7.12	7.16	7.16	7.15			
	0.48	1.06	6.48	6.52	6.52	6.48	6.5			
	0.38	0.86	5.8	5.76	5.8	5.8	5.79			
	0.28	0.66	5.16	5.12	5.12	5.12	5.13			
	0.18	0.46	4.4	4.4	4.4	4.4	4.4			
	0.08	0.26	3.76	3.68	3.72	3.76	3.73			

as the stand	1/N	10 10	P	
anu in			65	
mille that he	Contra to			Street of t
I varied the	Separation To	f the co	mer cube	by
5 cm every	measurement	, Recorde	d below as	rel anti-
the measurem	ients I go	of at each	h distance	c.
120 100	and the de		and liter	and Frank
Corner cube	∆t_	At a	Δt	Δt ·
location	total 1	trial 2	trial 3	trial 4
SSCM	6.90 ns	6.86 ms	6.90ns	6.88 hs
	±0.02ns	±0.02ns	±0.02ms	±0.02 ms
50 cm	6.62 ms	6.60 ns	6.62 ns	6,60 ms
La sur land	±0.02 ms	10.02ns	± 0.02 m	± 0.02 ms
45 cm	6.24ns	6.24 ns	6.24 ns	6.22 ns
and the second	±0.02 ms	±0.07 ns	20.02 05	±0.02 ms
40 cm	5.80 ns	5.86 ms	5.86 ms	5.84 ms
	±0.02 ms	= 0.02ms	1 = 0.02 as	\$ 0.0703

Position 1: x=61.0±0.1cm $t = 7.12 \pm 0.0 | ns (Air)$ $t = 7.56 \pm 0.0 | ns (rod)$ VA Position 2: X= 52.0 201 cm t=6.60 +0.01 MS (Air) t=6.92 toiolos (rod) ettr Position 3: N= 49:0 + 0,1 cm t=6,12 ± 0,01 n 5 (Air) t=6,52±0,0/ns (red) Position 4: 7= 37,0 ±0,1 Cm $t = 5.52 \pm 0.0 | nS(Air) = 5.96 \pm 0.0 | n = (rool)$ Position 5: $\gamma = 30.0 \pm 0.1 \, \text{cm}$ $t = 5.12 \pm a_0 \ln s(A_r)$ $t = 5.52 \pm a_0 \ln s(rad)$ Position 1: X=SS.0 ±0.1cm $\pm = 6.80 \pm 0.01 \text{ ns}(\text{Air}) = 7.24\pm0.01 \text{ ns}(\text{rod})$ Position 2: X= JO.O talcm $t = 6.48 \pm 0.01 \text{ ns(Air)} = 6.81 \pm 0.01 \text{ ns(wd)}$ Set 2. Position 31 2=4310 ± 01 cm $t = 6.20 \pm 0.01 \text{ MS(Air)}$ $t = 6.52 \pm 0.01 \text{ MS(rod)}$ Position 4: X=40,0±0,1 cm t= 5,80±0,0 ns (Air) t=6.16±0,0 ns (rod) Position S: $\chi = 35.0 \pm 0.1$ cm $\pm = 552 \pm 0.1$ INS (Air) $\pm = 5.80 \pm 0.0$ ms (md)