
Acoustic	Impedance	Laboratory	-	Background	
	
Impedance	
	
Impedance	(Z),	in	general,	is	how	hard	you	have	to	“push”	to	get	a	“unit	response”	from	any	
system.		
	
In	electrical	system,	impedance	is	voltage	divided	by	current.	So	(for	example),	for	a	resistor,	
impedance	=	resistance.		
	
What	is	the	impedance	of	a	capacitor?	For	direct	current,	it’s	infinity…	you	can’t	run	DC	current	
through	a	capacitor,	of	course.	But	an	AC	voltage	placed	across	a	capacitor	will	result	in	some	
current	flow…	less	current	at	lower	frequencies,	of	course.		In	addition,	the	current	will	not	be	
in	phase	with	the	AC	voltage,	because	the	voltage	is	proportional	to	the	charge	(the	integral	of	
the	current).		To	keep	track	of	the	phase	of	the	response,	Z	is	complex	number.		
	

Zcap =
1
iωC

	

	
This	makes	sense	if	we	use	complex	notation	to	represent	the	voltage	and	the	current:	
	
I (t) = I0e

iωt

V (t) =V0e
iωt

	

	

When	using	complex	notation,	it	is	understood	that	the	actual	voltage	and	current	are	the	real	
parts!		Writing		
	
eiωt = cosωt + isinωt 	
and	using	the	above	impedance	of	a	capacitor,	you	should	be	able	to	show	that	the	voltage	
across	a	capacitor	lags	the	current	by	90°:	if	the	current	is	a	cosine,	the	voltage	is	a	sine.		
	
Acoustic	Impedance	
In	a	sound	wave,	pressure	does	the	pushing	and	the	“current”	is	air	flow.	In	a	pipe,	the	
impedance	is	the	ratio	of	the	pressure	amplitude	to	the	volumetric	flow.	Just	as	in	the	case	of	
electrical	circuits,	these	are	not	necessarily	in	phase	(in	fact	they	are	usually	out	of	phase)	and	
thus	Z	is	complex.		

	
However,	for	a	sound	wave	moving	down	a	pipe	(in	the	+x	direction,	say),	the	pressure	and	the	
flow	are	in	phase!	In	a	sinusoidal	wave,	for	example,	the	peaks	of	the	pressure	are	also	where	
the	air	is	“flowing”	most,	in	the	+x	direction.		
	
However,	in	musical	instruments	(and	in	general),	a	pipe	will	have	waves	going	in	both	
directions.		For	a	wave	going	in	the	–x	direction,	the	flow	is	180°	out	of	phase	with	the	pressure.	



(At	the	pressure	peaks,	the	air	flows	in	the	–x	direction.)	So	the	impedance	measured	at	a	point	
in	a	pipe	will	in	general	be	complex.		
	
Acoustic	Impedance	Lab	Outline	
The	first	day,	we	will	use	a	GUI	program	to	explore	sounds	made	by	pipes	and	how	sound	
reflects	off	pipe	ends.		The	second	week,	you	will	make	measurements	that	will	allow	you	to	
find	acoustic	impedance.			
	
To	find	acoustic	impedance,	you’ll	measure	the	sound	with	two	microphones	separated	by	4	cm.	
Your	job	is	to	use	those	measured	signals	to	find	the	left-going	wave	and	the	right-going	wave.	
In	our	case,	we	don’t	need	to	worry	about	the	absolute	volumetric	flow…	we	are	just	interested	
in	finding	something	proportional	to	the	flow.	For	the	right-going	wave	(assuming	right	=	+x),	
the	flow	is	proportional	to	the	pressure;	for	the	left-going	wave,	the	flow	is	proportional	to		
–pressure.	
	
The	calculation	is	best	done	using	MatLab.	There’s	a	starter	“stub”	of	a	program,	“TMAnalyze”,	
that	includes	matlab	commands	to	read	in	the	save	waveforms	from	each	microphone.	The	rest	
is	up	to	you!	There	is	also	some	“fake”	data,	“t-mics”	and	“t-waves”	that	you	can	use	to	test	your	
analysis	program.	(t-mics	is	the	recorded	microphone	signals,	and	t-waves	is	the	correct	
decomposition	into	left	and	right-going	waves.)	
	
Of	course,	impedance	depends	on	frequency,	so	you	need	to	Fourier	transform	the	waves	and	
consider	each	Fourier	component	separately.	Eventually,	you’ll	get	a	plot	of	“relative	
impedance”	vs	“frequency”.	(The	best	thing	to	plot	is	the	magnitude	of	the	impedance,	since	
impedance	is	complex.)	
	
Signals,	Fourier	Transforms,	Matlab	
Audio	recording	will	be	done	at	44100	Hz	(samples	per	second),	16	bits,	two	channels	(one	for	
each	microphone.)		
	
The	typical	signal	record	you	will	use	is	16384	points.		
The	matlab	command	g	=	fft(signal)	will	fourier	transform	the	signal	into	frequency	space.		
	
The	fft	implicitly	assumes	that	the	signal	repeats	after	16384	points.	Thus,	the	signal	can	
contain	only	sinusoids	that	repeat	exactly	in	16384/44100	=	0.3715	s.	Another	way	of	saying	
the	same	thing	is	that	the	signal	contains	only	multiples	of	frequency	44100/16384	=	2.6917	Hz	
(include	DC,	frequency	=	0.)		The	vector	g	will	be	complex;	the	first	value,	g(1),	is	the	DC	
component,	the	2nd	value,	g(2),	is	the	fourier	component	for	frequency	2.6917	Hz,	g(3)	is	the	
component	for	frequency	5.3834	Hz,	etc,	up	to	the	8196th	element.		Then	things	change.		
	
Since	the	signal	is	real,	it	must	be	the	case	that	g(ω)	=	g*(-ω),	where	the	*	means	complex	
conjugate.	(It	may	help	to	write	out	the	complex	exponentials	to	see	what	you	need	to	do	to	
make	the	imaginary	parts	cancel!)	Matlab	stores	the	fourier	coefficient	corresponding	to	a	
frequency	of	-2.6917	Hz	in	the	very	last	element;	the	component	for	frequency	-5.3834	Hz	is	in	
the	2nd	to	last	element,	etc.		(If	you	were	worried	about	things	lining	up,	the	bin	containing	the	



highest	frequency	(called	the	Nyquist	frequency),	g(8196),	is	always	real.	So	it	doesn’t	need	a	
complex	conjugate	partner.	)	
	
When	you	write	your	analysis	program,	you	may	want	to	modify	phases	of	fourier	components	
(for	example,	to	shift	a	wave	left	or	right,	you	add	or	subtract	a	phase	that	varies	linearly	with	
frequency).	My	recommendation	is	to	only	worry	about	phases	for	points	1:8196.	Then,	zero	
out	the	top	half	of	the	fourier	transform	and	rewrite	it	as	the	conjugate	symmetric	reflection	of	
the	lower	half.	Like	this:	
 
g([nFFT/2 + 1:end]) = 0; 
g = g + conj(g([1, end:-1:2]); 

	
(nFFT	=	16384).	A	good	test	is	the	inverse	fourier	transform,	ifft.	If	matlab’s	ifft	gives	you	a	
complex	result,	then	you	fed	it	input	that	wasn’t	conjugate	symmetric.	(All	real	waves	are	real!)	
	
	
Batteries	
Please	try	to	remember	to	turn	off	the	microphones	at	the	end	of	lab.	Otherwise	you’ll	drain	the	
batteries!	
	
	
	


