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Lecture 17: Analysis of Sequential Data 



Miscellaneous

• Midterm solutions posted, final grades will be 
posted very shortly

• Class in P&A this week, in PAIS next week
• Homework from Practical Statistics coming soon 

(probably Monday, after proposal reviews 
complete)

• Next assignment: proposal reviews



Proposal Reviews

• Proposal review on Wednesday (and probably next Monday)
• 8 proposals to review
• Proposal Review Process

• You have been assigned two proposals to review.
• You are the primary reviewer for one proposal, and the secondary reviewer 

on a second proposal.
• Before Wednesday: read your two proposals and submit both a primary 

review and secondary review on Learn
• Both Due: Wednesday, October 23 at 3:30pm
• Come to class prepared to present and lead discussion on your primary

proposal assignment, with some help from secondary reviewer
• Be prepared to write up a summary of the class discussion for your 

secondary proposal assignment, with some help from primary reviewer
• Everyone will vote on score for proposal after class discussion



Can you start a fire with 1 Watt?

• https://www.youtube.com/watch?v=-CIUZBBz0Uc

https://www.youtube.com/watch?v=-CIUZBBz0Uc


Sequential Data – 1D Statistics

• Last week: overview of data analysis, some 
examples of data analysis in Jupyter notebooks

• Today: mostly covering material in Practical 
Statistics for Astronomers: Chapter 9, and Practical 
Statistics online lectures

• What are some examples of sequential data?



Observations with sequential data

• Intensity vs position as a single beam/pixel scans across 
the sky

• Signal variation along a row of a CCD
• Light curves (intensity vs time on a single pixel)
• Many other measurements vs time (including stock 

market, population, GDP, etc)
• Typical nomenclature (in astronomy)

• Scans: spatial domain
• Timestreams: time domain
• Spectra – frequency/wavelength domain



What do we want to do with sequential data?

• Trend-finding: can we predict the future behavior?
• Establish a “baseline,” so any signal on top of the 

baseline can be analyzed
• Faint signal detection, when signal and noise are 

comparable in magnitude
• Filter data to improve signal-to-noise ratio
• Quantify the level of noise
• Search for periodic signals
• Correlation: between antennas, or between spectra



Data transformations

• With these kinds of analyses, the features we are 
interested in only emerge after transformation

• Filtering: remove known noise to find feature
• Transform along known important feature of data

• For example: Periodicity search, spectral-line correlator

• Expand data into orthogonal functions
• Fourier transform is just one option



Fourier Analysis

• Extremely common analysis technique, with many 
reasons for being physically motivated

• Most physical processes at both macro and micro levels 
involve oscillation and frequency: orbits of galaxies, stars or 
planets, atomic transitions at particular frequencies, spatial 
frequencies on the sky as measured by correlated output 
from pairs of telescopes.

• We want the frequencies composing data streams; just the 
amplitudes of these frequency components may be the answer (as 
in the case of detection of a spectral line).

• In many physical sciences there is frequent need to measure a 
single signal from a data series. In measuring a specific 
attribute of this signal such as redshift, the power of Fourier 
analysis has long been recognized



Fourier Analysis

• Any continuous function may be represented as the 
sum of sines and cosines:

• 𝑓 𝑡 = ∫%&
'&𝐹(𝜔)𝑒%-./𝑑𝑡

• F is the phased amplitudes of the sinusoidal components
of f – the Fourier Transform (FT)



Properties of Fourier Transforms

• The FT of a sine is a delta function in the frequency 
domain

• The FT of a Gaussian is another Gaussian
(convenient!)

• The FT of 𝑓⨂𝑔 is F x G
• The FT of 𝑓(𝑡 + 𝜏) is (FT of f)(𝑒%-.5) (shift theorem) 



Fourier and Sampling

• Actual data is not continuous and infinite
• Can use the discrete Fourier Transform (DFT) 
• With N data points taken at uniform interval Δt,

DFT results in the continuous function multipled
by the ‘comb’ function

• f’(t) can be represented as:
• 𝑓6 𝑡 = 𝐴8 ∑ 𝑠𝑖𝑛(𝑛Δ𝜐) + 𝐵8 ∑ cos(𝑛Δ𝜐)
• Interval Δ𝜐 = 2𝜋Δ𝑡



The Fast Fourier Transform (FFT)

• FFT – Cooley and Tukey 1965
Does the transform of N points in a time proportional 
to N log N, rather than the N2 timing of a brute-force 
implementation. This is a monumental cpu saver. 

• Quirks (see Bracewell, or Numerical Recipes)
• The typical (?) arrangement of its input / output data
• normalization 

• Critical to most image processing, critical to design of 
radio telescopes 

• Algorithm was apparently known to Gauss – even 
before Fourier had discovered his series. 

• It may be the most used algorithm on the planet. (Used 
for every .jpg image, for a start) 



Discrete Fourier Transform

Relationship between the (continuous) Fourier transform and the discrete Fourier transform. Left 
column: A continuous function (top) and its Fourier transform (bottom). Center-left 
column: Periodic summation of the original function (top). Fourier transform (bottom) is zero 
except at discrete points. The inverse transform is a sum of sinusoids called Fourier 
series. Center-right column: Original function is discretized (multiplied by a Dirac comb) (top). Its 
Fourier transform (bottom) is a periodic summation (DTFT) of the original transform. Right 
column: The DFT (bottom) computes discrete samples of the continuous DTFT. The inverse DFT 
(top) is a periodic summation of the original samples. The FFT algorithm computes one cycle of 
the DFT and its inverse is one cycle of the inverse DFT.

https://en.wikipedia.org/wiki/Discrete_Fourier_transform

https://en.wikipedia.org/wiki/Fourier_transform
https://en.wikipedia.org/wiki/discrete_Fourier_transform
https://en.wikipedia.org/wiki/Periodic_summation
https://en.wikipedia.org/wiki/Fourier_series
https://en.wikipedia.org/wiki/Dirac_comb
https://en.wikipedia.org/wiki/Discrete-time_Fourier_transform
https://en.wikipedia.org/wiki/Fast_Fourier_transform
https://en.wikipedia.org/wiki/Discrete_Fourier_transform


Five criteria for successful discrete-sampling

1. The Nyquist criterion or Nyquist limit guarantees no information at
spatial frequencies above π/Δt. The sampling interval Δt sets the highest 
spatial frequency 2π/Δt retained; higher frequencies present in the data are 
lost. 
2. The Sampling theorem: any bandwidth-limited function can be specified 
exactly by regularly-sampled values provided that the sample interval does 
not exceed a critical length (approximately half the FWHM resolution), i.e. for 
an instrumental half-width B, f'(t) → f(t) if Δt < B/2. Any physical system is 
band-pass limited, preventing full recovery of the signal. 
3. To avoid any ambiguity - aliasing - in the reconstruction of the scan from its 
DFT, the sampling interval must be small enough for the amplitude 
coefficients of components at frequencies as high as π/Δt to be effectively 
zero. Otherwise there’s a tangle with the negative tail of the repeating 
function → ambiguity. 
4. The lowest frequencies are 2π/(NΔt). Such low-frequency components may 
be real or instrumental; but to find signal the scan length must exceed the 
width of single resolved features by > 10. 
5. The integration time per sample must be long enough for decent S/N. 



Five criteria for successful discrete-sampling

1. The Nyquist criterion or Nyquist limit guarantees 
no information at spatial frequencies above π/Δt. 
The sampling interval Δt sets the highest spatial 
frequency 2π/Δt retained; higher frequencies 
present in the data are lost. 

Can draw out sine waves with sample points to see this
effect



Five criteria for successful discrete-sampling

2. The Sampling theorem: any bandwidth-limited 
function can be specified exactly by regularly-sampled 
values provided that the sample interval does not 
exceed a critical length (approximately half the FWHM 
resolution)
i.e. for an instrumental half-width B, f'(t) → f(t) if Δt < 

B/2. 
Any physical system is band-pass limited, which can 
prevent full recovery of the signal. 



Sampling theorem

Need ~ three samples per resolvable unit (achieved resolution)



Five criteria for successful discrete-sampling

3. To avoid any ambiguity - aliasing - in the 
reconstruction of the scan from its DFT, the sampling 
interval must be small enough for the amplitude 
coefficients of components at frequencies as high as 
π/Δt to be effectively zero. Otherwise there’s a tangle 
with the negative tail of the repeating function → 
ambiguity. 



Example of aliasing

https://en.wikipedia.org/wiki/Nyquist%E2%80%93Shannon_sampling_theorem

https://en.wikipedia.org/wiki/Nyquist%E2%80%93Shannon_sampling_theorem


• http://www.rctn.org/bruno/npb261/aliasing.pdf

http://www.rctn.org/bruno/npb261/aliasing.pdf


Five criteria for successful discrete-sampling

4. The lowest frequencies are 2π/(NΔt). Such low-
frequency components may be real or instrumental; 
but to find signal the scan length must exceed the 
width of single resolved features by > 10. 

Example: long-period exoplanets



Five criteria for successful discrete-sampling

5. The integration time per sample must be long 
enough for decent S/N. 



Interactive 2D fourier transforms

• http://www.jezzamon.com/fourier/index.html
• https://betterexplained.com/articles/an-

interactive-guide-to-the-fourier-transform/

http://www.jezzamon.com/fourier/index.html
https://betterexplained.com/articles/an-interactive-guide-to-the-fourier-transform/


Example - Redshifts from Cross-
Correlation
• http://articles.adsabs.harvard.edu/cgi-bin/nph-

iarticle_query?1979AJ.....84.1511T&amp;data_type
=PDF_HIGH&amp;whole_paper=YES&amp;type=PR
INTER&amp;filetype=.pdf

• A Survey of Galaxy Redshifts. I. Data Reduction 
Techniques

• John Tonry and Marc Davis
• The Astronomical Journal, October 1979

http://articles.adsabs.harvard.edu/cgi-bin/nph-iarticle_query?1979AJ.....84.1511T&amp;data_type=PDF_HIGH&amp;whole_paper=YES&amp;type=PRINTER&amp;filetype=.pdf


Tonry and Davis 1979 

• Galaxy spectrum g(n) with n = A lnλ +B (n is bin number)
• Template spectrum t(n), zero redshift, instrumentally-broadened. 
• Set up DFTs:  G(k) = Σn g(n) exp(-2πink/N) , and equiv for T(k) 
• Then FT for cross-correlation

• c(n) = g ¤ t(n) is C(k) = (1/Nσgσt) G(k) T*(k) 
• Now set g(n) = α t(n) ¤ b (n – δ) 

• The galaxy spectrum is a multiple of the template spectrum 
convolved with a broadening function shifted by δ. This function 
accounts for the velocity dispersion and the redshift, which we 
seek

• Assume b(n) Gaussian, and likewise for c(n) , centered at δ
• Minimizing Χ2(α,δ;b)=Σn [α t¤b(n-δ) -g(n)]2

is equivalent to maximizing (1/σt x b )c ¤ b(δ) 





Filtering

• Why filter?



Filtering

• To reduce noise
• To compress data



Examples of filtering

• Running average filter
• Low-pass filter

• Wiener filter 
(https://reference.wolfram.com/language/ref/WienerFil
ter.html)

• Savitsky-Golay filter

• High-pass filter
• For example: removing a baseline drift

https://reference.wolfram.com/language/ref/WienerFilter.html


Filtering to reduce noise

• Many sources of noise are “white”
• Photon noise, shot noise, random noise
• “White” noise has a flat spectrum extending out to the limit 

given by the sampling theorem

• The FT of a Gaussian is another Gaussian
• Other noise or instrumental effects are commonly Gaussian
• Can taper off the amplitudes of high frequencies, where 

there is little information (low-pass filter)

• Filtering will decrease the noise, but it must decrease 
the signal as well 

• If you do it right, you still “win”



Wiener filter example

https://www.astroml.org/book_figures/chapter10/fig_wiener_filter.html

https://www.astroml.org/book_figures/chapter10/fig_wiener_filter.html


High-pass filtering

• Get rid of unwanted low frequencies
• Fitting baselines

• Have to be careful to preserve signal, can have big
signal component at low frequencies




