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Lecture 17: Analysis of Sequential Data



Miscellaneous

* Midterm solutions posted, final grades will be
posted very shortly

e Class in P&A this week, in PAIS next week

* Homework from Practical Statistics coming soon
(probably Monday, after proposal reviews
complete)

* Next assignment: proposal reviews



Proposal Reviews

* Proposal review on Wednesday (and probably next Monday)

e 8 proposals to review

* Proposal Review Process

You have been assigned two proposals to review.

You are the primary reviewer for one proposal, and the secondary reviewer
on a second proposal.

Before Wednesday: read your two proposals and submit both a primary
review and secondary review on Learn

Both Due: Wednesday, October 23 at 3:30pm

Come to class prepared to present and lead discussion on your primary
proposal assignment, with some help from secondary reviewer

Be prepared to write up a summary of the class discussion for your
secondary proposal assignment, with some help from primary reviewer

Everyone will vote on score for proposal after class discussion



Can you start a fire with 1 Watt?

e https://www.youtube.com/watch?v=-CIUZBBz0OUc



https://www.youtube.com/watch?v=-CIUZBBz0Uc

Sequential Data — 1D Statistics

 Last week: overview of data analysis, some
examples of data analysis in Jupyter notebooks

* Today: mostly covering material in Practical
Statistics for Astronomers: Chapter 9, and Practical
Statistics online lectures

 What are some examples of sequential data?



Observations with sequential data

* Intensity vs position as a single beam/pixel scans across
the sky

* Signal variation along a row of a CCD
* Light curves (intensity vs time on a single pixel)

* Many other measurements vs time (including stock
market, population, GDP, etc)

» Typical nomenclature (in astronomy)
e Scans: spatial domain
* Timestreams: time domain
e Spectra — frequency/wavelength domain



What do we want to do with sequential data?

* Trend-finding: can we predict the future behavior?

 Establish a “baseline,” so any signal on top of the
baseline can be analyzed

* Faint signal detection, when sighal and noise are
comparable in magnitude

* Filter data to improve sighal-to-noise ratio

* Quantify the level of noise

» Search for periodic signals

* Correlation: between antennas, or between spectra



Data transformations

* With these kinds of analyses, the features we are
interested in only emerge after transformation

* Filtering: remove known noise to find feature

* Transform along known important feature of data
* For example: Periodicity search, spectral-line correlator

* Expand data into orthogonal functions
* Fourier transform is just one option



Fourier Analysis

e Extremely common analysis technique, with many
reasons for being physically motivated

* Most physical processes at both macro and micro levels
involve oscillation and frequency: orbits of galaxies, stars or
planets, atomic transitions at particular frequencies, spatial
frequencies on the sky as measured by correlated output
from pairs of telescopes.

* We want the frequencies composing data streams; just the
amplitudes of these frequency components may be the answer (as

in the case of detection of a spectral line).

* In many physical sciences there is frequent need to measure a
single signal from a data series. In measuring a specific
attribute of this signal such as redshift, the power of Fourier
analysis has long been recognized



Fourier Analysis

* Any continuous function may be represented as the
sum of sines and cosines:
c f(0) = [1 Fw)e ™ tdt

* Fisthe phased amplitudes of the sinusoidal components
of f — the Fourier Transform (FT)



Properties of Fourier Transforms

* The FT of a sine is a delta function in the frequency
domain

e The FT of a Gaussian is another Gaussian
(convenient!)

*The FTof f®g isFx G
* The FT of f(t + 1) is (FT of f)(e "**?) (shift theorem)



Fourier and Sampling

* Actual data is not continuous and infinite
e Can use the discrete Fourier Transform (DFT)

* With N data points taken at uniform interval At,
DFT results in the continuous function multipled
by the ‘comb’ function

 f’(t) can be represented as:
« f'(t) = A, Y sin(nAv) + B, Y, cos(nAv)
* Interval Av = 2mAt



The Fast Fourier Transform (FFT)

 FFT — Cooley and Tukey 1965
Does the transform of N points in a time proportional
to N log N, rather than the N? timing of a brute-force
implementation. This is a monumental cpu saver.

e Quirks (see Bracewell, or Numerical Recipes)
* The typical (?) arrangement of its input / output data
* normalization

* Critical to most image processing, critical to design of
radio telescopes

e Algorithm was apparently known to Gauss — even
before Fourier had discovered his series.

* |t may be the most used algorithm on the planet. (Used
for every .jpg image, for a start)



Discrete Fourier Transformn
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Relationship between the (continuous) Fourier transform and the discrete Fourier transform. Left
column: A continuous function (top) and its Fourier transform (bottom). Center-left

column: Periodic summation of the original function (top). Fourier transform (bottom) is zero
except at discrete points. The inverse transform is a sum of sinusoids called Fourier

series. Center-right column: Original function is discretized (multiplied by a Dirac comb) (top). Its
Fourier transform (bottom) is a periodic summation (DTFT) of the original transform. Right
column: The DFT (bottom) computes discrete samples of the continuous DTFT. The inverse DFT
(top) is a periodic summation of the original samples. The FFT algorithm computes one cycle of
the DFT and its inverse is one cycle of the inverse DFT.

https://en.wikipedia.org/wiki/Discrete Fourier transform
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https://en.wikipedia.org/wiki/Fourier_transform
https://en.wikipedia.org/wiki/discrete_Fourier_transform
https://en.wikipedia.org/wiki/Periodic_summation
https://en.wikipedia.org/wiki/Fourier_series
https://en.wikipedia.org/wiki/Dirac_comb
https://en.wikipedia.org/wiki/Discrete-time_Fourier_transform
https://en.wikipedia.org/wiki/Fast_Fourier_transform
https://en.wikipedia.org/wiki/Discrete_Fourier_transform

Five criteria for successful discrete-sampling

1. The Nyquist criterion or quuist limit guarantees no information at
spatial frequencies above nm/At. The sampling interval At sets the highest
spatial frequency 2n/At retained; higher frequencies present in the data are

lost.

2. The Sampling theorem: any bandwidth-limited function can be specified
exactly by regularly-sampled values provided that the sample interval does
not exceed a critical Ien(fth (approximately half the FWHM resolution), i.e. for
an instrumental half-width B f(t{ - f(t) if At < B/2. Any physical system is
band-pass limited, preventing full recovery of the signal.

3. To avoid any ambiguity - aliasing - in the reconstruction of the scan from its
DFT, the sampling interval must be small enough for the amplitude
coefficients of components at frequencies as high as /At to be effectively
zero. Otherwise there’s a tangle with the negative tail of the repeating
function - ambiguity.

4. The lowest frequencies are 2r/(NAt). Such low-frequency components may
be real or instrumental; but to find signal the scan length must exceed the
width of single resolved features by > 10.

5. The integration time per sample must be long enough for decent S/N.



Five criteria for successful discrete-sampling

1. The Nyquist criterion or Nyquist limit guarantees
no information at spatial frequencies above r/At.
The sampling interval At sets the highest spatial

frequency 2rt/At retained; higher frequencies
present in the data are lost.

Can draw out sine waves with sample points to see this
effect



Five criteria for successful discrete-sampling

2. The Sampling theorem: any bandwidth-limited
function can be specified exactly by regularly-sampled
values provided that the sample interval does not
exceed a critical length (approximately half the FWHM
resolution)

i.e. for an instrumental half-width B, f'(t) - f(t) if At <
B/2.

Any physical system is band-pass limited, which can
prevent full recovery of the signal.



Sampling theorem

Image CCD Recording Image CCD Recording
Centered on Pixel On Veartix of Pixals

Need ~ three samples per resolvable unit (achieved resolution)



Five criteria for successful discrete-sampling

3. To avoid any ambiguity - aliasing - in the
reconstruction of the scan from its DFT, the sampling
interval must be small enough for the amplitude
coefficients of components at frequencies as high as
/At to be effectively zero. Otherwise there’s a tangle
with the negative tail of the repeating function -
ambiguity.



Example of aliasing

Uist%E2%80%93Shannon sampling theorem



https://en.wikipedia.org/wiki/Nyquist%E2%80%93Shannon_sampling_theorem

3.2 Natural images

The avoidance of aliasing is also important in the design of the eye. For example, in
the human eye the lens filters out any spatial variations finer than 60 cycles/degree.
The Nyquist theorem tells us in this case that the photoreceptor spacing should be
at least 120 sample/degree, which is exactly what we have! Consider though what
the sampled retinal image might look like if this were not the case:

At upper left is shown a natural image that may typically fall on the retina, and
below this is shown the result of subsampling the image without properly blurring
beforehand. Compare this to the sampled version after blurring (lower right). It is
not difficult to see why nature has gone to the effort it has to match photoreceptor
spacing with the point-spread function (spatial-frequency cutoff) of the lens.

http://www.rctn.org/bruno/npb261/aliasing.pdf



http://www.rctn.org/bruno/npb261/aliasing.pdf

Five criteria for successful discrete-sampling

4. The lowest frequencies are 2it/(NAt). Such low-
frequency components may be real or instrumental;
but to find signal the scan length must exceed the
width of single resolved features by > 10.

Example: long-period exoplanets



Five criteria for successful discrete-sampling

5. The integration time per sample must be long
enough for decent S/N.



Interactive 2D fourier transforms

e http://www.jezzamon.com/fourier/index.html|

* https://betterexplained.com/articles/an-
interactive-guide-to-the-fourier-transform/



http://www.jezzamon.com/fourier/index.html
https://betterexplained.com/articles/an-interactive-guide-to-the-fourier-transform/

Example - Redshifts from Cross-

Correlation

e http://articles.adsabs.harvard.edu/cgi-bin/nph-
iarticle query?1979AJ.....84.1511T&amp:data type

=PDF HIGH&amp;whole paper=YES&amp;type=PR
INTER&amp;filetype=.pdf
* A Survey of Galaxy Redshifts. |. Data Reduction

Techniques
e John Tonry and Marc Davis
* The Astronomical Journal, October 1979



http://articles.adsabs.harvard.edu/cgi-bin/nph-iarticle_query?1979AJ.....84.1511T&amp;data_type=PDF_HIGH&amp;whole_paper=YES&amp;type=PRINTER&amp;filetype=.pdf

Tonry and Davis 1979

Galaxy spectrum g(n) with n = A InA +B (n is bin number)
Template spectrum t(n), zero redshift, instrumentally-broadened.
Set up DFTs: G(k) = Zn g(n) exp(-2mink/N) , and equiv for T(k)

Then FT for cross-correlation

e c(n)=gut(n)is C(k) = (1/Nogot) G(k) T*(k)

* Nowsetg(n)=at(n)xb(n-25)
The galaxy spectrum is a multiple of the template spectrum
convolved with a broadening function shifted by 6. This function

acciunts for the velocity dispersion and the redshift, which we
see

Assume b(n) Gaussian, and likewise for c(n), centered at 6
Minimizing X%(a,8;b)=2Zn [a tab(n-6) -g(n)]?
is equivalent to maximizing (1/0,, )c & b(6)



1522 TONRY AND DAVIS: GALAXY REDSHIFTS
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Filtering

* Why filter?



Filtering

* To reduce noise
* To compress data



Examples of filtering

* Running average filter

* Low-pass filter

 Wiener filter
(https://reference.wolfram.com/language/ref/WienerFil
ter.html)

 Savitsky-Golay filter

* High-pass filter

* For example: removing a baseline drift


https://reference.wolfram.com/language/ref/WienerFilter.html

Filtering to reduce noise

* Many sources of noise are “white”
* Photon noise, shot noise, random noise

* “White” noise has a flat spectrum extending out to the limit
given by the sampling theorem

* The FT of a Gaussian is another Gaussian
e Other noise or instrumental effects are commonly Gaussian

e Can taper off the amplitudes of high frequencies, where
there is little information (low-pass filter)

* Filtering will decrease the noise, but it must decrease
the signal as well

* If you do it right, you still “win”



Wiener filter example
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https://www.astroml.org/book figures/chapterl10/fig wiener filter.html



https://www.astroml.org/book_figures/chapter10/fig_wiener_filter.html

High-pass filtering

* Get rid of unwanted low frequencies
* Fitting baselines

* Have to be careful to preserve signal, can have big
sighal component at low frequencies



Minimum-Component Baselines: Example

(Above) A spectrum of 3C47
obtained with the Faint Object
Spectrograph of the William
Herschel Telescope, La Palma. The
redshift is 0.345; broad lines of
the hydrogen Balmer series can be

seen, fogether with narrow lines of
[OIII].

(Below) A spectrum of the A star
RZ Cas (Maxted et al. 1994).

The continuum obtained with the
minimum-component technique is
shown as the black line superposed
on the original data.
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