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Prof. Darcy Barron

Lecture 8: Detection principles across wavelengths



Reminders

HW 2 due Friday Sept 25 at 5pm
 Mid-term exam Wed Oct 2

* For next two weeks: detectors, statistics, and noise

 Summarized in Section 1.4.2 (Detectors: Basic Principles)

and Section 1.5 (Statistics and noise) of Measuring the
Universe

* For this week: read chapter 3 of Measuring the Universe
(Detectors for the ultraviolet through infrared)

* For the week after (Sept 23): read chapter 3 of Practical
Statistics for Astronomers

* If you have a limited background in statistics, may also
need to reference or skim Chapter 2 of Practical
Statistics for Astronomers



Explosive Growth in Ground-Based

Optical/lnfrared Telescopes
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Penetrates Earth's N N

Atmosphere?

Radiation Type  Radio Microwave Infrared Visible Ultraviolet  X-ray Gamma ray
Wavelength (m) 1072 10°° 0.5x10 °© 1078 10710 10712

10°
Approximate Scale I & \
of Wavelength K =
L 3

Buildings Humans  Butterflies Needle Point Protozoans Molecules Atoms  Atomic Nuclei

104 10% 10" 10" 10'6 10'8 10%°

Temperature of
objects at which
this radiation is the
most intense
wavelength emitted

1K 100 K 10,000 K 10,000,000 K
-272°C -173°C 9,727 °C ~10,000,000 °C



Atmospheric
opacity

Electromagnetic spectrum and our
atmosphere
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Telescope location vs wavelength

* Must be in space (totally blocked by atmosphere)

* Wavelengths shorter than 0.3 microns
e Ultraviolet, x-ray, gamma ray

* Wavelengths between 40 to 300 microns
* Must be at a special site to reduce atmospheric

absorption
* 40 micronsto~1cm
e Submillimeter and millimeter/microwave
* Can be anywhere (but interference from man-made

sources or local weather will help determine site)

* Wavelengths longer than 1 cm but less than 100 m
* Radio

* Wavelengths ~ 0.3 microns to 40 microns
e Optical and some infrared



Choosing telescope sites

e Some sites are chosen just to avoid interference
(communication, street lights, clouds, etc)
* VLA, Kitt Peak, Karoo desert, western Australia
* Some sites are chosen for atmospheric stability
 Want laminar (not turbulent) airflow over your site
* Mountaintops facing into prevailing winds coming from ocean
* Some sites are chosen for amount of atmosphere
* Scale height of atmosphere is 8km
* Scale height of water is 2km
* The best are good at all 3, and still relatively easy to

dCCessS
* Mauna Kea, South Pole, Chajnantor Plateau



THE ELECTROMAGNETIC SPECTRUM
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Three methods of detection

* Coherent detectors
* Interact local electric field with electrical field of incoming
photons and measure interference
* Thermal detectors
e Absorb energy of incoming photons and measure change in
temperature
* Photon detectors

* Absorb energy of incoming photons and release free charge
carriers



Attributes of Detector System

* Responsivity

e Spectral Response

* Frequency Response (or Bandwidth)
* Efficiency

* Electrical bandwidth

e Read noise (or readout noise)

* Photon noise



Photon statistics

* Photons are bosons, and they follow Bose-
Einstein statistics <n5>
* Arrivals are not independent
* Noise is not just proportional to number
of photons received

(ehvs/kT - 1)-1

* Two noise terms: shot noise and photon
. . <<
bunching/wave noise |
* Boltzmann occupation number n, <><>|
|
: : e
* number of photons in standing-wave |

mode in box at temperature T

* number of photons/s/Hz in (diffraction
limited) beam in free space (Richards
1994, J.Appl.Phys)



Photon statistics

* Three regimes

* nyg>>1

e hv<<kT

* Radio wavelengths

* Photon “bunching” is significant
* n,~1

e hv~kT

e ~ Millimeter wavelengths

* Both noise terms must be considered
* ny<<1

e hv>>kT

e Shot noise is significant

* Noise follows Poisson statistics

|




Phatcn density:

(B/B_mo=): .3

frequency (GHz)

Wien: n,<1=>noisex /n, (countingtats
RJ: n,>1=>noisexn, (waveoise)



Shot noise on an ideal detector

* Let P be the power falling onto the detector
* With an efficiency n in a small bandwidth Av

* Only considering shot noise as a nhoise source
* Average rate of photon emission events is given by r

* The average number of photon events occurring in a
timeTisgivenby N = 1T

* (Actual number of events will fluctuate around N for any one
particular interval of length T)

* Probability P(N) that in any one such interval, exactly N
photoevents occur, is given by the Poisson probability
distribution:



Poisson distribution

* A specific kind of binomial distribution

* For very rare, independent events with a large number
of trials

e “Poisson clumping”

* (pages 38-39 of Practical Statistics for Astronomers)



